J. Mater. Sci. Technol. ›› 2021, Vol. 68: 40-52.DOI: 10.1016/j.jmst.2020.08.001
• Research Article • Previous Articles Next Articles
Kunlei Houa,b, Min Wanga, Meiqiong Oua,*(), Haoze Lia, Xianchao Haoa, Yingche Maa, Kui Liua,*(
)
Received:
2020-05-05
Revised:
2020-06-02
Accepted:
2020-06-06
Published:
2021-03-30
Online:
2021-05-01
Contact:
Meiqiong Ou,Kui Liu
About author:
ycma@imr.ac.cn (Y. Ma).Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C[J]. J. Mater. Sci. Technol., 2021, 68: 40-52.
Ni | Cr | Fe | Mo | W | Al | Ti | Nb | C | B |
---|---|---|---|---|---|---|---|---|---|
Bal. | 19.80 | 4.32 | 1.30 | 3.04 | 1.17 | 2.93 | 1.46 | 0.108 | 0.0065 |
Table 1 Chemical composition of the alloy used in this study (wt.%).
Ni | Cr | Fe | Mo | W | Al | Ti | Nb | C | B |
---|---|---|---|---|---|---|---|---|---|
Bal. | 19.80 | 4.32 | 1.30 | 3.04 | 1.17 | 2.93 | 1.46 | 0.108 | 0.0065 |
Fig. 2. (a, b) SEM images showing the γ′ precipitation free zones (PFZ) along the two sides of grain boundaries after aging at 800 °C for 1000 h. (c, d) TEM images showing the γ′ phase being absorbed by η.
Fig. 3. (a) TEM image showing the nanoscale γ′ phase in grains after solution treatment, which was confirmed by the superlattice diffraction spots in (b). (c) The evolution of γ′ phase after aging at 800 °C for different time, with arrows indicating the γ′ phase with a rounded cubic morphology.
Fig. 4. (a) Schematic illustration showing the randomly distributed γ′ phase in matrix in 3D space, ES-γ′: the extra-small γ′ phase. (b) Top view of the white plane in (a) and the sections of γ′ phase after cutting. (c) A typical TEM image of the γ/γ′ structure, arrows indicating the extra small sections excluded from counting. (d) The cube of γ′ radius with respecting to aging time at 800 °C.
Fig. 5. (a) Engineering stress-strain curves, (b) tensile strength, yield strength and (c) elongation of K4750 alloy after aging at 800 °C for different time.
Fig. 6. The dislocation configuration of the fractured specimens after aging at 800 °C for 2 h. (a) Well-defined slip bands travelling across the γ′/γ structure toward two directions. (b, c) Enlarged slip bands consisting paired dislocations, Δ: the spacing between two dislocations. (d) An illustration showing the structure of one set of dislocation pair framed in (c), τ: the applied shear stress, Dl: the leading dislocation, Dt: the trailing dislocation, APB: the anti-phase boundary.
Fig. 7. (a-c) The dislocation configuration of the fractured specimen after aging at 800 °C for 20 h. (d) An illustration showing the structure of one set of dislocation pair framed in (c).
Fig. 10. The dislocation configuration of the fractured specimen after aging at 800 °C for 1000 h. (a, b) Paired dislocations in the same γ′ phase. (c) γ′ segments after dislocations shearing and (d) Orowan loops after dislocations by-passing.
Fig. 11. The evolution of deformation mechanisms as a function of aging time and γ′ diameter. WCD: weakly coupled dislocations, SCD: strongly coupled dislocations.
Element | Cr | Fe | Mo | W | Al | Ti | Nb |
---|---|---|---|---|---|---|---|
ki (MPa/at1/2) | 337 | 153 | 1015 | 977 | 225 | 775 | 1183 |
Content (at.%) | 28.003 | 5.258 | 1.363 | 1.416 | 1.239 | 1.382 | 0.102 |
Table 2 Strengthening constants ki of different alloying elements in Ni[34] and the concentration of element i in γ matrix.
Element | Cr | Fe | Mo | W | Al | Ti | Nb |
---|---|---|---|---|---|---|---|
ki (MPa/at1/2) | 337 | 153 | 1015 | 977 | 225 | 775 | 1183 |
Content (at.%) | 28.003 | 5.258 | 1.363 | 1.416 | 1.239 | 1.382 | 0.102 |
Fig. 12. (a) Calculated CRSS as a function of γ? diameter with different γAPB values from 0.1 to 0.3 J m-2. (b) Strength evolution as a function of γ? diameter: experimental data associated with theoretical curves (γAPB taken as 0.175 J m-2) including the contribution of several strengthening components, WQ: the yield strength after water quenched.
Fig. 13. The fractographies and longitudinal microstructures of the fractured specimens after aging at 800 °C for (a-c) 2 h, (d-f) 20 h, and (g-i) 1000 h.
Fig. 14. Microstructures near the fracture area for specimens after aging at 800 °C for (a, b) 2 h, (c, d) 20 h, and (e, f) 1000 h. The inverse pole figure (IPF) maps and the kernel average misorientation (KAM) maps showing stress concentration at grain boundaries and interdendritic areas.
Fig. 15. Microstructures near the fracture area for specimens after aging at 800 °C for 1000 h. The band contrast (BC) image, IPF and KAM maps show the stress concentration at (a-c) the dispersed MC carbides in interdendritic areas and (d-f) the continuous carbides along grain boundaries.
[1] | R.C. Reed, The Superalloys: Fundamentals and Applications Cambridge University Press, New York, (2008). |
[2] |
T.M. Pollock. Nat. Mater., 15 (2016), pp. 809-815.
DOI PMID |
[3] |
E. Nembach, K. Suzuki, M. Ichihara, S. Takeuchi., Philos. Mag. A, 51 (1985), pp. 607-618.
DOI URL |
[4] |
R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock, Metall. Mater. Trans. A, 40 (2009), pp. 1588-1603.
DOI URL |
[5] |
X.Z. Lv, F. Sun, J.Y. Tong, Q. Feng, J.X. Zhang, J. Mater. Eng. Perform., 24 (2014), pp. 143-148.
DOI URL |
[6] |
X.Z. Lv, F. Sun, J.Y. Tong, S. Zhang, Q. Feng, J.X. Zhang, J. Mater. Eng. Perform., 24 (2015), pp. 4620-4625.
DOI URL |
[7] | W. Huther, B. Reppich, Z. Metall., 69 (1978), pp. 628-634. |
[8] |
B. Reppich, Acta Metall., 30 (1982), pp. 87-94.
DOI URL |
[9] |
A.J. Ardell, Metall. Trans. A, 16 (1985), pp. 2131-2165.
DOI URL |
[10] |
E. Nembach, G. Neite, Prog. Mater Sci., 29 (1985), pp. 177-319.
DOI URL |
[11] | L. Singhal, J. Martin Acta Metall., 16 (1968), pp. 947-953. |
[12] |
B. Reppich, P. Schepp, G. Wehner, Acta Metall., 30 (1982), pp. 95-104.
DOI URL |
[13] |
A.W. Thompson, J.A. Brooks, Acta Metall., 30 (1982), pp. 2197-2203.
DOI URL |
[14] |
L. Whitmore, M.R. Ahmadi, M. Stockinger, E. Povoden-Karadeniz, E. Kozeschnik, H. Leitner, Mater. Sci. Eng. A, 594 (2014), pp. 253-259.
DOI URL |
[15] |
Q.H. Fang, L. Li, J. Li, H.Y. Wu, Z.W. Huang, B. Liu, Y. Liu, K.L. Peter, J. Mech. Phys. Solids, 122 (2019), pp. 177-189.
DOI URL |
[16] |
M.P. Jackson, R.C. Reed, Mater. Sci. Eng. A, 259 (1999), pp. 85-97.
DOI URL |
[17] | D.M. Collins, H.J. Stone, Int. J.Plast., 54 (2014), pp. 96-112. |
[18] |
M.R. Ahmadi, E. Povoden-Karadeniz, L. Whitmore, M. Stockinger, A. Falahati, E. Kozeschnik, Mater. Sci. Eng. A, 608 (2014), pp. 114-122.
DOI URL |
[19] |
A.J. Goodfellow, E.I. Galindo-Nava, K.A. Christofidou, N.G. Jones, C.D. Boyer, T.L. Martin, P.A.J. Bagot, M.C. Hardy, H.J. Stone, Acta Mater., 153 (2018), pp. 290-302.
DOI URL |
[20] |
F. Sun, J.Y. Tong, Q. Feng, J.X. Zhang, J. Alloys Compd., 618 (2015), pp. 728-733.
DOI URL |
[21] |
W. Sun, X.Z. Qin, J.T. Guo, L.H. Lou, L.A. Zhou, Mater. Des., 69 (2015), pp. 70-80.
DOI URL |
[22] |
X.F. Chen, Z.H. Yao, J.X. Dong, H.W. Shen, Y. Wang, J. Alloys Compd., 735 (2018), pp. 928-937.
DOI URL |
[23] |
S. Antonov, M. Detrois, R.C. Helmink, S. Tin, J. Alloys Compd., 626 (2015), pp. 76-86.
DOI URL |
[24] |
M.Q. Ou, X.C. Hao, Y.C. Ma, R.C. Liu, L. Zhang, K. Liu, J. Alloys Compd., 732 (2018), pp. 107-115.
DOI URL |
[25] |
M.Q. Ou, Y.C. Ma, W.W. Xing, X.C. Hao, B. Chen, L.L. Ding, K. Liu, J. Mater. Sci. Technol., 35 (2019), pp. 1270-1277.
DOI URL |
[26] |
K.L. Hou, M.Q. Ou, M. Wang, H.Z. Li, Y.C. Ma, K. Liu, Mater. Sci. Eng. A, 763 (2019), 138137.
DOI URL |
[27] |
I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids, 19 (1961), pp. 35-50.
DOI URL |
[28] |
L. Xiao, D.L. Chen, M.C. Chaturvedi, Scr. Mater., 52 (2005), pp. 603-607.
DOI URL |
[29] |
P. Zhang, Y. Yuan, J. Li, Y.F. Xu, X.L. Song, G.X. Yang, Mater. Sci. Eng. A, 702 (2017), pp. 343-349.
DOI URL |
[30] |
E.I. Galindo-Nava, L.D. Connor, C.M.F. Rae, Acta Mater., 98 (2015), pp. 377-390.
DOI URL |
[31] |
A.J. Goodfellow, E.I. Galindo-Nava, C. Schwalbe, H.J. Stone, Mater. Des., 173 (2019), 107760.
DOI URL |
[32] | N. Petch, J. Iron Steel Inst., 174 (1953), pp. 25-28. |
[33] |
A.A.W. Thompson, Acta Metall., 23 (1975), pp. 1337-1342.
DOI URL |
[34] |
Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki, Trans. Jpn. Inst. Met., 27 (1986), pp. 656-664.
DOI URL |
[35] |
Z. Zhang, D.L. Chen, Scr. Mater., 54 (2006), pp. 1321-1326.
DOI URL |
[36] |
T.T. Wang, C.S. Wang, W. Sun, X.Z. Qin, J.T. Guo, L.Z. Zhou, Mater. Des., 62 (2014), pp. 225-232.
DOI URL |
[37] |
M. Enomoto, H. Harada, Metall. Mater. Trans. A, 20 (1989), pp. 649-664.
DOI URL |
[38] |
P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, R.C. Reed, Acta Mater., 103 (2016), pp. 688-699.
DOI URL |
[39] |
F. Yang, J.S. Hou, S. Gao, C.S. Wang, L.Z. Zhou, Mater. Sci. Eng. A, 715 (2018), pp. 126-136.
DOI URL |
[1] | Xiangfu Liu, Rongwen Wang, Jinming Ma, Jibin Zhang, Pengfei Jiang, Yao Wang, Guoli Tu. Durable metal-enhanced fluorescence flexible platform by in-situ growth of micropatterned Ag nanospheres [J]. J. Mater. Sci. Technol., 2021, 69(0): 89-95. |
[2] | Pan Liu, Lulu Hu, Qinhao Zhang, Cuiping Yang, Zuosi Yu, Jianqing Zhang, Jiming Hu, Fahe Cao. Effect of aging treatment on microstructure and corrosion behavior of Al-Zn-Mg aluminum alloy in aqueous solutions with different aggressive ions [J]. J. Mater. Sci. Technol., 2021, 64(0): 85-98. |
[3] | Bingnan Qian, Jinyong Zhang, Yangyang Fu, Fan Sun, Yuan Wu, Jun Cheng, Philippe Vermaut, Frédéric Prima. In-situ microstructural investigations of the TRIP-to-TWIP evolution in Ti-Mo-Zr alloys as a function of Zr concentration [J]. J. Mater. Sci. Technol., 2021, 65(0): 228-237. |
[4] | Leilei Chen, Jun Xu, Yi Wang, Rongqin Huang. Ultra-small MoS2 nanodots-incorporated mesoporous silica nanospheres for pH-sensitive drug delivery and CT imaging [J]. J. Mater. Sci. Technol., 2021, 63(0): 91-96. |
[5] | Jingwei Xu, Xiaju Cheng, Fuxian Chen, Weijie Li, Xiaohui Xiao, Puxiang Lai, Guopeng Xu, Li Xu, Yue Pan. Fabrication of multifunctional polydopamine-coated gold nanobones for PA/CT imaging and enhanced synergistic chemo-photothermal therapy [J]. J. Mater. Sci. Technol., 2021, 63(0): 97-105. |
[6] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
[7] | Yang Wang, Shun Zhang, Ruizhi Wu, Nodir Turakhodjaev, Legan Hou, Jinghuai Zhang, Sergey Betsofen. Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al-Li-Yb-Er-Sc-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 197-203. |
[8] | Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications [J]. J. Mater. Sci. Technol., 2021, 75(0): 39-47. |
[9] | Lin Gao, Kai Li, Song Ni, Yong Du, Min Song. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 25-32. |
[10] | Tao Zheng, Xiaobing Hu, Feng He, Qingfeng Wu, Bin Han, Chen Da, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai, Zhenhai Xia, C.T. Liu. Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging [J]. J. Mater. Sci. Technol., 2021, 69(0): 156-167. |
[11] | R. Liu, P. Zhang, Z.J. Zhang, B. Wang, Z.F. Zhang. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction [J]. J. Mater. Sci. Technol., 2021, 70(0): 233-249. |
[12] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Xiangdong Zha, Yingche Ma, Kui Liu. Microstructure evolution and stress rupture properties of K4750 alloys with various B contents during long-term aging [J]. J. Mater. Sci. Technol., 2021, 73(0): 108-115. |
[13] | Mohammad Nasim, Yuncang Li, Ming Wen, Cuie Wen. A review of high-strength nanolaminates and evaluation of their properties [J]. J. Mater. Sci. Technol., 2020, 50(0): 215-244. |
[14] | Zhiqiang Zhang, Changshu He, Ying Li, Lei Yu, Su Zhao, Xiang Zhao. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43(0): 1-13. |
[15] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||