J. Mater. Sci. Technol. ›› 2021, Vol. 68: 35-39.DOI: 10.1016/j.jmst.2020.08.014
• Research Article • Previous Articles Next Articles
Yonggang Fan, Junxiang Fan, Cong Wang*()
Received:
2020-05-10
Revised:
2020-06-09
Accepted:
2020-06-28
Published:
2021-03-30
Online:
2021-05-01
Contact:
Cong Wang
About author:
*E-mail address: wangc@smm.neu.edu.cn (C. Wang).Yonggang Fan, Junxiang Fan, Cong Wang. Detailing interfacial reaction layer products between cubic boron nitride and Cu-Sn-Ti active filler metal[J]. J. Mater. Sci. Technol., 2021, 68: 35-39.
Fig. 1. CBN/Cu-Sn-Ti composites brazed at 1223 K: (a) Microstructure of the brazing interface, (b) magnified image of the yellow square area in (a), and (c) line elemental distribution scanning images of the yellow straight line across the interface in (b).
Fig. 2. (a) TEM dark field (DF) images showing the interface between CBN and Cu-Sn-Ti brazing filler metal; (b)-(f) EDS mappings of Cu, Sn, Ti, N, and B elements in the interfacial region, respectively; (g), (h) and (i) selected area diffraction patterns (SADPs) of red, yellow and green dashed circle areas in (a), respectively.
Fig. 4. Schematic diagram of interfacial reaction layer formation mechanism: (a) Stage Ⅰ: Initial stage with TiN nucleating, (b) Stage Ⅱ: TiB2 nucleating, (c) Stage Ⅲ: TiN, TiB2 reaction layer growing and TiB nucleating, and (d) Stage Ⅳ: Final state.
[1] |
F.A. Khalid, U.E. Klotz, H.R. Elsener, B. Zigerlig, P. Gasser, Scr. Mater., 50 (2004), pp. 1139-1143.
DOI URL |
[2] |
Q. Li, J. Xu, H. Su W. Lei, Int. J. Adv. Manuf. Technol., 80 (2015), pp. 1173-1180.
DOI URL |
[3] |
L. Zhu, Z. Yang Z. Li, Int. J. Adv. Manuf. Technol., 100 (2019), pp. 2537-2555.
DOI URL |
[4] |
S.T. Park, J.G. Han, M. Keunecke K. Lee, Int. J. Refract. Met. Hard Mater., 65 (2016), pp. 52-56.
DOI URL |
[5] | J.H. Yang, H.Y. Fang, J. Mater. Sci. Technol., 21 (2005), pp. 782-784. |
[6] |
H.J. Xu, Y.C. Fu, B. Xiao, J.H. Xu, Key Eng. Mater., 259-260 (2004), pp. 6-9.
DOI URL |
[7] |
T.W. Hwang, C.J. Evans, S. Malkin, J. Manuf. Sci. Eng., 122 (2000), pp. 42-50.
DOI URL |
[8] | H.M. Lin, Y.S. Liao, C.C. Wei, J. Manuf. Sci., 264 (2015), pp. 679-684. |
[9] |
Z.W. Yang, C.L. Wang, Y. Wang, L.X. Zhang, D.P. Wang, J.C. Feng, J. Mater. Sci. Technol., 33 (2017), pp. 1392-1401.
DOI URL |
[10] |
Y. Wang, K. Lei, Y. Ruan, W. Dong, Int. J. Refract. Met. Hard Mater., 54 (2016), pp. 98-103.
DOI URL |
[11] |
Q. Miao, W. Ding, Y. Zhu, Z. Chen, Y. Fu, Mater. Des., 98 (2016), pp. 243-253.
DOI URL |
[12] | J. Zhang, J.Y. Liu, T.P. Wang, J. Mater. Sci. Technol., 34 (2017), pp. 139-145. |
[13] |
Z.X. Zhang, C.L. Dai, J. Xu, J. Mater. Sci. Technol., 25 (2009), pp. 39-47.
DOI URL |
[14] |
A. Ghosh, A.K. Chattopadhyay, Int. J. Refract. Met. Hard Mater., 68 (2017), pp. 96-103.
DOI URL |
[15] |
S. Liu, B. Xiao, H. Xiao, L. Meng, Z. Zhang, H. Wu, Surf. Coat. Technol., 286 (2016), pp. 376-382.
DOI URL |
[16] |
E. Faran, I. Gotman, E.Y. Gutmanas, Mater. Lett., 43 (2000), pp. 192-196.
DOI URL |
[17] |
C. Leinenbach, R. Transchel, K. Gorgievski, F. Kuster, H.R. Elsener, K. Wegener, J. Mater. Eng. Perform., 24 (2015), pp. 2042-2050.
DOI URL |
[18] |
S. Liu, L. Han, Y. Zou, P. Zhu, B. Liu, J. Mater. Sci. Technol., 33 (2017), pp. 1386-1391.
DOI URL |
[19] |
I.L. Pobol, A.A. Shipko, I.G. Nesteruk, Diam Relat. Mater., 6 (1997), pp. 1067-1070.
DOI URL |
[20] |
S.X. Liu, B. Xiao, Z.Y. Zhang, D.Z. Duan, Int. J. Refract. Met. Hard Mater., 54 (2016), pp. 54-59.
DOI URL |
[21] |
Y. Wang, X.M. Qiu, D.Q. Sun, S.Q. Yin, Int. J. Refract. Met. Hard Mater., 29 (2011), pp. 293-297.
DOI URL |
[22] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B, 50 (2019), pp. 601-606.
DOI URL |
[23] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B, 50 (2019), pp. 2517-2522.
DOI URL |
[24] |
Y. Fan, J. Fan, C. Wang, J. Mater. Sci. Technol., 35 (2019), pp. 2163-2168.
DOI URL |
[25] |
Y. Fan, J. Fan, C. Wang, Metall. Mater. Trans. B, 51 (2020), pp. 880-884.
DOI URL |
[26] |
M. Kitiwan, A. Ito, T. Goto, Ceram. Int., 41 (2015), pp. 4498-4503.
DOI URL |
[27] |
J.G. Yang, H.Y. Fang, J. Mater. Sci. Technol., 18 (2002), pp. 289-290.
DOI URL |
[28] |
J. Wang, C. Liu, C. Leinenbach, U.E. Klotz, Calphad, 35 (2011), pp. 82-94.
DOI URL |
[29] |
W. Lv, X. Zhang, D. Zhang, R. Wu, Acta. Metall. Sin., 30 (2000), pp. 104-108 (in Chinese).
DOI URL |
[30] |
Q. Miao, W. Ding, Y. Zhu, Z. Chen, J. Xu, C. Yang, Ceram. Int., 42 (2016), pp. 13723-13737.
DOI URL |
[31] |
Y.C. Hsieh, S.T. Lin, J. Alloys Compd., 466 (2008), pp. 126-132.
DOI URL |
[32] |
E. Faran, I. Gotman, E.Y. Gutmanas, Mater. Sci. Eng. A, 288 (2000), pp. 66-74.
DOI URL |
[33] | Y.H. Wang, M.Z. Wang, X.Y. Wen, J.B. Zang, J. Inorg. Mater., 10 (1995), pp. 351-355. |
[34] |
Y. Wang, Z.Z. Duan, G. Chen, Q.Y. Jiang, W. Dong, K. Lei, Vacuum, 145 (2017), pp. 30-38.
DOI URL |
[35] |
W.F. Ding, J.H. Xu, M. Shen, Y.C. Fu, B. Xiao, Mater. Sci. Technol., 22 (2006), pp. 105-109.
DOI URL |
[36] |
X. Ma, C. Li, W. Zhang, Mater. Sci. Eng. A, 392 (2005), pp. 394-402.
DOI URL |
[1] | Haoqiang Zhang, Lin Liu, Zhiliang Pei, Nanlin Shi, Jun Gong, Chao Sun. An effective strategy towards construction of CVD SiC fiber-reinforced superalloy matrix composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 179-185. |
[2] | Honggang Dong, Yueqing Xia, Xinxing Xu, Gul Jabeen Naz, Xiaohu Hao, Peng Li, Jun Zhou, Chuang Dong. Performance of GH4169 brazed joint using a new designed nickel-based filler metal via cluster-plus-glue-atom model [J]. J. Mater. Sci. Technol., 2020, 39(0): 89-98. |
[3] | Wei Fu, Xiaoguo Song, Ruichen Tian, Yuzhen Lei, Weimin Long, Sujuan Zhong, Jicai Feng. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2020, 40(0): 15-23. |
[4] | Xinyu Ren, Wei Liu, Haishui Ren, Yongjuan Jing, Wei Mao, Huaping Xiong. Microstructures and joining characteristics of NbSS/Nb5Si3 composite joints by newly-developed Ti66-Ni22-Nb12 filler alloy [J]. J. Mater. Sci. Technol., 2020, 58(0): 95-99. |
[5] | H.S. Ren, H.P. Xiong, W.M. Long, B. Chen, Y.X. Shen, S.J. Pang. Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AuNi filler metal [J]. J. Mater. Sci. Technol., 2019, 35(9): 2070-2078. |
[6] | Chun Li, Xiaoqing Si, Jian Cao, Junlei Qi, Zhibo Dong, Jicai Feng. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction [J]. J. Mater. Sci. Technol., 2019, 35(11): 2470-2476. |
[7] | Yonggang Fan, Junxiang Fan, Cong Wang. Brazing temperature-dependent interfacial reaction layer features between CBN and Cu-Sn-Ti active filler metal [J]. J. Mater. Sci. Technol., 2019, 35(10): 2163-2168. |
[8] | Xiangzhao Zhang, Guiwu Liu, Junnan Tao, Yajie Guo, Jingjing Wang, Guanjun Qiao. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: Microstructures and joint mechanical behavior [J]. J. Mater. Sci. Technol., 2018, 34(7): 1180-1188. |
[9] | fillerJ. Zhang, J.Y. Liu, T.P. Wang. Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler [J]. J. Mater. Sci. Technol., 2018, 34(4): 713-719. |
[10] | Duo Liu, Yanyu Song, Bin Shi, Qi Zhang, Xiaoguo Song, Hongwei Niu, Jicai Feng. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler [J]. J. Mater. Sci. Technol., 2018, 34(10): 1843-1850. |
[11] | Wang Y., Cai X.Q., Yang Z.W., Wang D.P., Liu X.G., Liu Y.C.. Effects of Nb content in Ti-Ni-Nb brazing alloys on the microstructure and mechanical properties of Ti-22Al-25Nb alloy brazed joints [J]. J. Mater. Sci. Technol., 2017, 33(7): 682-689. |
[12] | Li Wenwen, Chen Bo, Xiong Yi, Xiong Huaping, Cheng Yaoyong, Zou Wenjiang. Joining of Cf/SiBCN composite with two Ni-based brazing fillers and interfacial reactions [J]. J. Mater. Sci. Technol., 2017, 33(5): 487-491. |
[13] | Chen Xiaoguang, Xie Ruishan, Lai Zhiwei, Liu Lei, Yan Jiuchun, Zou Guisheng. Interfacial Structure and Formation Mechanism of Ultrasonic-assisted Brazed Joint of SiC Ceramics with Al-12Si Filler Metals in Air [J]. J. Mater. Sci. Technol., 2017, 33(5): 492-498. |
[14] | Wang Guanglei, Sun Yuan, Wang Xinguang, Liu Jide, Liu Jinlai, Li Jinguo, Yu Jinjiang, Zhou Yizhou, Jin Tao, Sun Xudong, Sun Xiaofeng. Microstructure evolution and mechanical behavior of Ni-based single crystal superalloy joint brazed with mixed powder at elevated temperature [J]. J. Mater. Sci. Technol., 2017, 33(10): 1219-1226. |
[15] | H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, L. Ye. Microstructures and Mechanical Properties of Vacuum Brazed Ti3Al/TiAl Joints Using Two Ti-based Filler Metals [J]. J. Mater. Sci. Technol., 2016, 32(4): 372-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||