J. Mater. Sci. Technol. ›› 2021, Vol. 67: 156-164.DOI: 10.1016/j.jmst.2020.06.037
• Research article • Previous Articles Next Articles
Nana Zhaoa, Fengchu Zhangb,1, Fei Zhanc, Ding Yib,*(), Yijun Yangb,*(
), Weibin Cuia,*(
), Xi Wangb
Received:
2020-05-22
Revised:
2020-06-04
Accepted:
2020-06-06
Published:
2021-03-20
Online:
2021-04-15
Contact:
Ding Yi,Yijun Yang,Weibin Cui
About author:
cuiweibin@epm.neu.edu.cn (W. Cui).1These authors contributed equally to this work.
Nana Zhao, Fengchu Zhang, Fei Zhan, Ding Yi, Yijun Yang, Weibin Cui, Xi Wang. Fe 3+-stabilized Ti3C2Tx MXene enables ultrastable Li-ion storage at low temperature[J]. J. Mater. Sci. Technol., 2021, 67: 156-164.
Fig. 2. (a) XRD patterns of parent Ti3AlC2, pure Ti3C2Tx MXene, T/F-4:1 and α -Fe2O3, respectively. (b) SEM image of T/F-4:1. (c, d) TEM image and corresponding SAED pattern of T/F-4:1, respectively.
Fig. 3. (a) XPS survey spectra of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1, respectively. (b) High-resolution XPS spectrum of O 1s of pure Ti3C2Tx MXene and T/F-4:1, respectively. (c) Raman spectra of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1, respectively. (d) FT-IR spectra of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1, respectively.
Fig. 4. (a) CV curves of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1 at 0.2 mV s-1 at -10 °C, respectively. (b) Galvanostatic charge/discharge profiles of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1 at 200 mA g-1 at -10 °C. (c) Rate performances of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1 at -10 °C. (d) EIS spectra of pure Ti3C2Tx MXene, Fe2O3 and T/F-4:1 at -10 °C (inset shows the pattern of equivalent circuit of EIS spectra for T/F-4:1 electrode). (e) Cycling performances and the corresponding coulombic efficiencies of pure Ti3C2Tx MXene, Fe2O3, T/F-4:1, T/F-2:1 and T/F-1:2 at 200 mA g-1 after 300 cycles at -10 °C, respectively.
Fig. 5. (a-c) TEM image and high-resolution XPS spectra of O 1s and Li 1s of pure Ti3C2Tx MXene electrode after 300 cycles at -10 °C, respectively. (d-f) TEM image and high-resolution XPS spectra of O 1s and Li 1s of T/F-4:1 after 300 cycles at -10 °C, respectively.
Fig. 6. ——(a) Side view of Ti3C2 with -O functional groups. (b) Energy variation of Li diffusion (inset shows the minimal diffusion path) in Ti3C2O2 and T-O/F, respectively. (c) Side view of Ti3C2 with -OH functional groups. (d) Energy variation of Li diffusion (inset shows the minimal diffusion path) in Ti3C2(OH)2 and T-OH/F, respectively.
[1] |
Y. Liu, Y. Zhu, Y. Cui, Nat. Energy 4 (2019) 540-550.
DOI URL |
[2] | R.E. Ciez, J.F. Whitacre, Nat. Sustainability 2 (2019) 148-156. |
[3] |
H.D. Um, K.H. Choi, I. Hwang, S.H. Kim, K. Seo, S.Y. Lee, Energy Environ. Sci. 10(2017) 931-940.
DOI URL |
[4] |
X.Z. Liu, Y.H. Wang, Y.J. Yang, W. Lv, G. Lian, D. Golberg, X. Wang, X. Zhao, Y. Ding, Nano Energy 70 ( 2020), 104550.
DOI URL |
[5] | Y. Liu, B.C. Yang, X.L. Dong, Y.G. Wang, Y.Y. Xia, Angew. Chem. Int. Ed. 56(2017) 1-6. |
[6] |
S.M. Li, X.C. Liu, G.B. Liu, Y. Wan, H. Liu, Ionics 23 (2017) 19-26.
DOI URL |
[7] | Y. Yamada, J. Wang, S. Ko, E. Watanab, A. Yamada, Nat. Energy 4 (2019) 269-280. |
[8] |
Y. Li, K.W. Wong, Q. Dou, W. Zhang, K.M. Ng, ACS Appl. Energy Mater. 1(2018) 2664-2670.
DOI URL |
[9] | C.S. Rustomji, Y. Yang, T.K. Kim, J. Mac, Y.J. Kim, E. Caldwell, H. Chung Y.S. Meng, Science 356 (2017) 6345. |
[10] |
X.L. Dong, Z.W. Guo, Z.Y. Guo, Y.G. Wang, Y.Y. Xia, Joule 2 (2018) 902-913.
DOI URL |
[11] | Y.Y. Wang, B.H. Hou, J.Z. Guo, Q.L. Ning, W.L. Pang, J.W. Wang, C.L. Lü, X.L. Wu, Adv. Energy Mater. ( 2018), 1703252. |
[12] |
G.L. Zhu, K.C. Wen, W.Q. Lv, X.Z. Zhou, Y.C. Liang, F. Yang, Z.L. Chen, M.D. Zou, J.C. Li, Y.Q. Zhang, W.D. He, J. Power Sources 300 (2015) 29-40.
DOI URL |
[13] |
R.H. Qin, Y.Q. Wei, T.Y. Zhai, H.Q. Li, J. Mater. Chem. A 6 (2018) 9737-9746.
DOI URL |
[14] |
A. Yaqub, S.A. Pervez, U. Farooq, M. Saleem, C.H. Doh, Y.J. Lee, M.J. Hwang, J.H. Choi, D. Kim, J. Korean Phys. Soc. 65(2014) 317-324.
DOI URL |
[15] |
H.B. Shu, X.Y. Wang, Q. Wu, B.N. Hu, X.K. Yang, Q.L. Wei, Q.Q. Liang, Y.S. Bai, M. Zhou, C. Wu, M.F. Chen, A.W. Wang, L.L. Jiang, J. Power Sources 237 (2013) 149-155.
DOI URL |
[16] | W.Q. Ma, Y.H. Wang, Y.J. Yang, X. Wang, Z.H. Yuan, X.Z. Liu, Y. Ding, ACS Appl.Mater. Interfaces 11 (2019) 9073-9082. |
[17] |
Y.D. Agnese, M.R. Lukatskaya, K.M. Cook, P.L. Taberna, Y. Gogotsi, P. Simon, Electrochem. Commun. 48(2014) 118-122.
DOI URL |
[18] |
Q. Tang, Z. Zhou, P.W. Shen, J. Am. Chem. Soc. 134(2012) 16909-16916.
DOI URL |
[19] |
Q.Q. Meng, J.L. Ma, Y.H. Zhang, Z. Li, C.Y. Zhi, A. Hu, J. Fan, Nanoscale 10 (2018) 3385-3392.
DOI URL PMID |
[20] |
D. Zhao, M. Clites, G.B. Ying, S. Kota, J. Wang, V. Natu, X. Wang, E. Pomerantseva, M. Cao, M. Barsoum, Chem. Commun. 54(2018) 4533-4536.
DOI URL |
[21] |
D.Y. Zhao, R.Z. Zhao, S.H. Dong, X.G. Miao, Z.W. Zhang, C.X. Wang, L.W. Yin, Energy Environ. Sci. 12(2019) 2422-2432.
DOI URL |
[22] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Science 353 (2016) 1137-1140.
DOI URL PMID |
[23] |
M.C. Smart, B.V. Ratnakumar, S. Surampudi, J. Electrochem. Soc. 149(2002) A361.
DOI URL |
[24] |
C. Wang, X.D. Zhu, Y.C. Mao, F. Wang, X.T. Gao, S.Y. Qiu, S.R. Le, K.N. Sun, Chem. Commun. 55(2019) 1237-1240.
DOI URL |
[25] |
Q. Xue, Z.X. Pei, Y. Huang, M.S. Zhu, Z.J. Tang, H.F. Li, Y. Huang, N. Li, H.Y. Zhang, C.Y. Zhi, J. Mater. Chem. A 5 (2017) 20818-20823.
DOI URL |
[26] |
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler, M.R. Lukatskaya, Y. Gogotsi, T.F. Jaramillo, A. Vojvodic, ACS Energy Lett. 1(2016) 589-594.
DOI URL |
[27] |
G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169-11186.
DOI URL |
[28] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865-3868.
DOI URL PMID |
[29] |
P.E. Bl¨ochl, Phys. Rev. B 50 (1994) 17953-17979.
DOI URL |
[30] |
S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32(2011) 1456-1465.
DOI URL PMID |
[31] | G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113(2000) 9901-9904. |
[32] |
Q.M. Peng, J.X. Guo, Q.R. Zhang, J.Y. Xiang, B.Z. Liu, A.G. Zhou, R.P. Liu, Y.J. Tian, J. Am. Chem. Soc. 136(2014) 4113-4116.
DOI URL |
[33] | L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, Angew. Chem. Int.Ed. 56(2017) 1825-1829. |
[34] | Y.L. Ying, Y. Liu, X.Y. Wang, Y.Y. Mao, W. Cao, P. Hu, X.S. Peng, ACS Appl. Mater.Interfaces 7 (2015) 1795-1803. |
[35] | O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, M.W. Barsoum, Mater. Chem.Phys. 139(2013) 147-152. |
[36] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23(2011) 4248-4253.
DOI URL PMID |
[37] |
O. Mashtalir, M. Naguib, V.N. Mochalin, Y.D. Agnese, M. Heon, M.W. Barsoum, Y. Gogotsi, Nat. Commun. 4(2013) 1716.
DOI URL PMID |
[38] | Y.Q. Deng, T.X. Shang, Z.T. Wu, Y. Tao, C. Luo, J.C. Liang, D.L. Han, R.Y. Lyu, C.S. Qi, W. Lv, F.Y. Kang, Q.H. Yang, Adv. Mater. ( 2019), 1902432. |
[39] | T. Hu, J.M. Wang, H. Zhang, Z.J. Li, M.M. Hu, X.H. Wang, Phys. Chem. Chem.Phys. 17(2015) 9997-10003. |
[40] |
M.V. Reddy, T. Yu, C.H. Sow, Z.X. Shen, C.T. Lim, G.V.S. Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17(2007) 2792-2799.
DOI URL |
[41] |
Y.S. Wang, Y.Y. Li, Z.P. Qiu, X.Z. Wu, P.F. Zhou, T. Zhou, J.P. Zhao, Z.C. Miao, J. Zhou, S.P. Zhuo, J. Mater. Chem. A 6 (2018) 11189-11197.
DOI URL |
[42] |
S.S. Zhang, K. Xu, T.R. Jow, Electrochim. Acta 49 (2004) 1057-1061.
DOI URL |
[43] |
X. Miao, R. Yin, X. Ge, Z. Li, L. Yin, Small 13 ( 2017), 1702138.
DOI URL |
[44] |
Y.H. Kwon, K. Minnici, M.M. Huie, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, E. Reichmanis, Chem. Mater. 28(2016) 6689-6697.
DOI URL |
[45] |
F.F. Liu, Y.C. Liu, X.D. Zhao, X.B. Liu, L.Z. Fan, J. Mater. Chem. A 7 (2019) 16712-16719.
DOI URL |
[46] |
A.M. Andersson, M. Herstedt, A.G. Bishop, K. Edström, Electrochim. Acta 47(2002) 1885-1898.
DOI URL |
[47] | A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, K. Edström, J. PowerSources 119-121(2003) 522-527. |
[48] |
S.P. Kim, A.C.T. Van Duin, V.B. Shenoy, J. Power Sources 196 (2011) 8590-8597.
DOI URL |
[49] |
M. Khazaei, M. Arai, T. Sasaki, C.Y. Chung, N.S. Venkataramanan, M. Estili, Y. Sakka, Y. Kawazoe, Adv. Funct. Mater. 23(2013) 2185-2192.
DOI URL |
[50] | G. Gao, A.P. O’Mullane, A.Du, ACS Catal. 7(2017) 494-500. |
[51] | Y.H. Wang, C. Ma, W.Q. Ma, W. Fan, Y. Sun, H.M. Yin, X.X. Shi, X.Z. Liu Y. Ding, 2D Materials 6 ( 2019), 045025. |
[52] |
Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, P.R.C. Kent, J. Am. Chem. Soc. 136(2014) 6385-6394.
DOI URL |
[53] |
C. Eames, M. Islam, J. Am. Chem. Soc. 136(2014) 16270-16276.
DOI URL |
[54] |
Y. Xie P.R.C. Kent, Phys. Rev. B 87 ( 2013), 235441.
DOI URL |
[1] | Tiantian Wang, Jun Mei, Jianjun Liu, Ting Liao. Maximizing ionic transport of Li1+xAlxTi2-xP3O12 electrolytes for all-solid-state lithium-ion storage: A theoretical study [J]. J. Mater. Sci. Technol., 2021, 73(0): 45-51. |
[2] | Bin Zhang, Yuping Duan, Haifeng Zhang, Shuo Huang, Guojia Ma, Tongmin Wang, Xinglong Dong, . Magnetic transformation of Mn from anti-ferromagnetism to ferromagnetism in FeCoNiZMnx (Z = Si, Al, Sn, Ge) high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 124-131. |
[3] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[4] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[5] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[6] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[7] | Yong-Xin Yang, Zhe Fang, Yi-Hao Liu, Ya-Chen Hou, Li-Guo Wang, Yi-Fan Zhou, Shi-Jie Zhu, Rong-Chang Zeng, Yu-Feng Zheng, Shao-Kang Guan. Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent [J]. J. Mater. Sci. Technol., 2020, 46(0): 114-126. |
[8] | Jin Bai, Xiao Chen, Emilia Olsson, Huimin Wu, Shiquan Wang, Qiong Cai, Chuanqi Feng. Synthesis of Bi2S3/carbon nanocomposites as anode materials for lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 50(0): 92-102. |
[9] | Weiqiang Hu, Zhi Dong, Liming Yu, Zongqing Ma, Yongchang Liu. Synthesis of W-Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation [J]. J. Mater. Sci. Technol., 2020, 36(0): 84-90. |
[10] | Yuchen Liu, Yu Zhou, Dechang Jia, Juanli Zhao, Banghui Wang, Yuanyuan Cui, Qian Li, Bin Liu. Composition dependent intrinsic defect structures in ASnO3 (A = Ca, Sr, Ba) [J]. J. Mater. Sci. Technol., 2020, 42(0): 212-219. |
[11] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[12] | Kai Li, Fangliang Gao, Yu-Jen Chou, Kaixiang Shen, Guoqiang Li. Microdomain atomic structure of Zr50Pd40Al10 metallic glasses and its formation mechanism [J]. J. Mater. Sci. Technol., 2019, 35(3): 248-253. |
[13] | Ali Muhammad, Ni Zhenyi, Cottenier Stefaan, Liu Yong, Pi Xiaodong, Yang Deren. Formation, Structures and Electronic Properties of Silicene Oxides on Ag(111) [J]. J. Mater. Sci. Technol., 2017, 33(7): 751-757. |
[14] | Jia Hui,Wang Rong,Ni Zhenyi,Liu Yong,Pi Xiaodong,Yang Deren. Formation, Stability, Geometry and Band Structure of Organically Surface-Modified Germanane [J]. J. Mater. Sci. Technol., 2017, 33(1): 59-64. |
[15] | Xingxing Liang, Ying Yang, Xin Jin, Jie Cheng. Polyethylene Oxide-Coated Electrospun Polyimide Fibrous Seperator for High-Performance Lithium-Ion Battery [J]. J. Mater. Sci. Technol., 2016, 32(3): 200-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||