J. Mater. Sci. Technol. ›› 2021, Vol. 67: 105-115.DOI: 10.1016/j.jmst.2020.06.019
• Research article • Previous Articles Next Articles
Xiao-Tao Luoa,*(), Yi Gea, Yingchun Xieb, Yingkang Weia, Renzhong Huangb, Ninshu Mac, Chidambaram Seshadri Ramachandrand, Chang-Jiu Lia
Received:
2019-12-19
Revised:
2020-06-03
Accepted:
2020-06-04
Published:
2021-03-20
Online:
2021-04-15
Contact:
Xiao-Tao Luo
About author:
* E-mail address: luoxiaotao@mail.xjtu.edu.cn (X.-T. Luo).Xiao-Tao Luo, Yi Ge, Yingchun Xie, Yingkang Wei, Renzhong Huang, Ninshu Ma, Chidambaram Seshadri Ramachandran, Chang-Jiu Li. Dynamic evolution of oxide scale on the surfaces of feed stock particles from cracking and segmenting to peel-off while cold spraying copper powder having a high oxygen content[J]. J. Mater. Sci. Technol., 2021, 67: 105-115.
Powder No. | State | Oxygen content (wt.%) |
---|---|---|
1 | As-received | 0.09 ± 0.031 |
2 | Ambient for 30 d in open air | 0.23 ± 0.045 |
3 | 100 °C for 3.0 h in open air | 0.47 ± 0.051 |
4 | 150 °C for 3.0 h in open air | 0.68 ± 0.057 |
5 | 150 °C for 4.5 h in open air | 0.81 ± 0.079 |
6 | 150 °C for 6.0 h in open air | 0.97 ± 0.027 |
Table 1 Oxygen content of the gas atomized Cu feedstock powders after different pretreatments.
Powder No. | State | Oxygen content (wt.%) |
---|---|---|
1 | As-received | 0.09 ± 0.031 |
2 | Ambient for 30 d in open air | 0.23 ± 0.045 |
3 | 100 °C for 3.0 h in open air | 0.47 ± 0.051 |
4 | 150 °C for 3.0 h in open air | 0.68 ± 0.057 |
5 | 150 °C for 4.5 h in open air | 0.81 ± 0.079 |
6 | 150 °C for 6.0 h in open air | 0.97 ± 0.027 |
Fig. 1. Surface morphologies (a) and polished cross sections (b, c) of the as-received gas atomized Cu powder (No.1) and artificially oxidized gas atomized Cu powders (Nos.2-6) with increasing oxygen contents from 0.23 wt.% to 0.97 wt.%. (d) is close view of (c).
Fig. 3. Variation of the DE as a function of the oxygen content of the Cu feedstock powders with insets displaying the cross-sections the resulting deposits.
Fig. 4. Surface morphologies of the single particle deposits showing the oxide scale evolution during the high velocity impact in CS deposition; (l) is the FIB sectioned deposited single particle sprayed with powder No.6. The inset in (l) shows the trapped oxide scale segment at “south pole” of the deposited No.6 Cu particle.
Fig. 5. Cross sectional microstructures showing the oxide scale distribution in the deposits sprayed with Cu powders of different oxide scale thickness. (a-d) deposit No.1. (e-h) deposit No.2. (i, j) deposit No.3. (k, l) deposit No.4. (m, n) deposit No.5. (o) deposit No.6. The EDS line-scanning patterns in (j), (l) and (n) are taken from the across the inter-particle boundaries from as indicated by the black arrows in (i), (k) and (m), respectively. The inset in (o) is the TEM specimen made across an inter-particle boundary where evident oxide scale was not observed by SEM.
Fig. 7. A comparison of the morphologies of the deposited single particle and cross sections of the Cu coating sprayed at 470 and 607 m/s by using No.5 powder. The inset in (a) is a close view of the material jetting at the rim of the deposited particle from white frame area showing the local cracking of the oxide scale.
Fig. 9. Electrical conductively of the deposits as a function of the oxygen content of the feedstock powders. The inset shows the preparation procedure of the specimen used for electrical conductivity measurement.
Fig. 10. (a, b) Microstructure schematic of the deposits with different oxide scale evolution mechanisms and (c) the simplified electrical resistance mode for one single particle along the in-plain direction. RCu is the electrical resistance of a deposited Cu particle. ROv, and ROp are electrical resistance of the oxide scale at the vertical and in-plain interfaces.
[1] | Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, C.J. Li, Corros. Sci. 138(2018) 105-115. |
[2] | S. Kumar, A.A. Rao, Appl. Surf. Sci. 396(2017) 760-773. |
[3] | Y.J. Li, X.T. Luo, H. Rashid, C.J. Li, J. Alloys. Compd. 740(2018) 406-413. |
[4] | E. Litovsky, J.I. Kleiman, M. Shagalov, R.B. Heimann, Surf. Coat. Technol. 242(2014) 141-145. |
[5] | C. Huang, W. Li, M.P. Planche, H. Liao, G. Montavon, J. Mater. Sci.Technol. 33(2017) 507-515. |
[6] | W. Li, K. Yang, S. Yin, X. Yang, Y. Xu, R. Lupoi, J. Mater. Sci.Technol. 34(2018) 440-457. |
[7] | C. Chen, Y. Xie, X. Yan, S. Yin, H. Liao, Addit. Manuf. 27(2019) 595-605. |
[8] | X.T. Luo, M.L. Yao, N. Ma, M. Takahashi, C.J. Li, Mater. Des. 155(2018) 384-395. |
[9] | C.J. Li, H.T. Wang, Q. Zhang, G.J. Yang, W.Y. Li, H.L. Liao, J. Therm. SprayTechnol. 19(2010) 951-961. |
[10] | W.Y. Li, C.J. Li, H. Liao, Appl. Surf. Sci. 256(2010) 4953-4958. |
[11] | W.Y. Li, W. Gao, Appl. Surf. Sci. 255(2009) 7878-7892. |
[12] | K.H. Kim, W. Li, X. Guo, Appl. Surf. Sci. 357(2015) 1720-1726. |
[13] | H. Assadi, F. Gärtner, T. Klassen, H. Kreye, Scr. Mater. 162(2019) 512-514. |
[14] | K.H. Ko, J.O. Choi, H. Lee, J. Mater.Proc.Technol. 214(2014) 1530-1535. |
[15] | T.H.V. Steenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs, P.H. Zajchowski, B. Pilsner, R.C. McCune, K.J. Barnett, Surf. Coat. Technol. 111(1999) 62-71. |
[16] | S. Yin, X. Wang, W. Li, H. Liao, H. Jie, Appl. Surf. Sci. 259(2012) 294-300. |
[17] | W.D. Nielsen Jr., Metallurgy of Copper-base Alloys, Promega, 1984. |
[18] | Y.J. Li, Y.K. Wei, X.T. Luo, C.J. Li, N. Ma, Correlating particle impact conditionwith microstructure and properties of the cold-sprayed metallic deposits, J.Mater. Sci. 40(2020) 185-195 (In press). |
[19] | K. Yang, W. Li, X. Guo, X. Yang, Y. Xu, J. Mater. Sci.Technol. 34(2018) 1570-1579. |
[20] | T.H. Kim, M.M.R. Howlader, T. Itoh, T. Suga, J. Vac. Sci. Technol. A 21 (2003) 449-453. |
[21] | Y. Kurashima, T. Matsumae, H. Takagi, Microelectron. Eng. 189(2018) 1-5. |
[22] | N.H. Tariq, L. Gyansah, X. Qiu, C. Jia, T. Xiong, J. Mater. Sci.Technol. 35(2019) 1053-1063. |
[23] | Y. Ichikawa, R. Tokoro, M. Tanno, K. Ogawa, Acta Mater. 164(2019) 39-49. |
[24] | R.C. Hibbeler, Mechanics of Materials, Pearson Prentice Hall, 8th Edition. ISBN10:0-13-602230-8; ISBN 13:978-0-13-602230-5 2011; 259-399. |
[25] | Y. Xie, C. Chen, M.P. Planche, R. Raoelison, C. Verdy, H. Liao, Proceedings ofInternational Thermal Spray Conference 2017, Düsseldorf, Germany, June 7-9, 2017. |
[26] | Y. Xie, S. Yin, C. Chen, M.P. Planche, R. Lupoi, Scr. Mater. 125(2016) 1-4. |
[27] | J. Wu, H. Fang, S. Yoon, H.J. Kim, C. Lee, Scr. Mater. 54(2006) 665-669. |
[28] | A.M. Limarga, D.S. Wilkinson, G.C. Weatherly, Scr. Mater. 50(2004) 1475-1479. |
[29] | T. Ganne, J. Crépin, S. Serror, A. Zaoui, Acta Mater. 50(2002) 4149-4163. |
[30] | F. Ahmed, K. Bayerlein, S. Rosiwal, M. Göken, K. Durst, Acta Mater. 59(2011) 5422-5433. |
[1] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[2] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[3] | Yaxin Xu, Wenya Li, Longzhen Qu, Xiawei Yang, Bo Song, Rocco Lupoi, Shuo Yin. Solid-state cold spraying of FeCoCrNiMn high-entropy alloy: an insight into microstructure evolution and oxidation behavior at 700-900 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 172-183. |
[4] | J.S. Cha, D.H. Kim, H.Y. Hong, K. Park. Enhanced thermoelectric performance of spark plasma sintered p-type Ca3-xYxCo4O9+δ systems [J]. J. Mater. Sci. Technol., 2020, 55(0): 212-222. |
[5] | A.V. Pozdniakov, R.Yu. Barkov. Microstructure and mechanical properties of novel Al-Y-Sc alloys with high thermal stability and electrical conductivity [J]. J. Mater. Sci. Technol., 2020, 36(0): 1-6. |
[6] | Weiyi Wang, Qinglin Pan, Geng Lin, Xiaoping Wang, Yuqiao Sun, Xiangdong Wang, Ji Ye, Yuanwei Sun, Yi Yu, Fuqing Jiang, Jun Li, Yaru Liu. Microstructure and properties of novel Al-Ce-Sc, Al-Ce-Y, Al-Ce-Zr and Al-Ce-Sc-Y alloy conductors processed by die casting, hot extrusion and cold drawing [J]. J. Mater. Sci. Technol., 2020, 58(0): 155-170. |
[7] | Xiang Qiu, Naeem ul Haq Tariq, Lu Qi, Jun-Rong Tang, Xin-Yu Cui, Hao Du, Ji-Qiang Wang, Tian-Ying Xiong. Influence of particulate morphology on microstructure and tribological properties of cold sprayed A380/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 44(0): 9-18. |
[8] | Yujuan Li, Yingkang Wei, Xiaotao Luo, Changjiu Li, Ninshu Ma. Correlating particle impact condition with microstructure and properties of the cold-sprayed metallic deposits [J]. J. Mater. Sci. Technol., 2020, 40(0): 185-195. |
[9] | Thang Q. Tran, Jeremy Kong Yoong Lee, Amutha Chinnappan, W.A.D.M. Jayathilaka, Dongxiao Ji, Vishnu Vijay Kumar, Seeram Ramakrishna. Strong, lightweight, and highly conductive CNT/Au/Cu wires from sputtering and electroplating methods [J]. J. Mater. Sci. Technol., 2020, 40(0): 99-106. |
[10] | Z.Y. Zhang, L.X. Sun, N.R. Tao. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48(0): 18-22. |
[11] | Xiawei Yang, Wenya Li, Siqi Yu, Yaxin Xu, Kaiwei Hu, Yaobang Zhao. Electrochemical characterization and microstructure of cold sprayed AA5083/Al2O3 composite coatings [J]. J. Mater. Sci. Technol., 2020, 59(0): 117-128. |
[12] | Minghe Fang, Xuhai Xiong, Yabin Hao, Tengxin Zhang, Han Wang, Hui-Ming Cheng, You Zeng. Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method [J]. J. Mater. Sci. Technol., 2019, 35(9): 1989-1995. |
[13] | Li Liu, Jian-Tang Jiang, Bo Zhang, Wen-Zhu Shao, Liang Zhen. Enhancement of strength and electrical conductivity for a dilute Al-Sc-Zr alloy via heat treatments and cold drawing [J]. J. Mater. Sci. Technol., 2019, 35(6): 962-971. |
[14] | Naeem ul Haq Tariq, Lawrence Gyansah, Xiang Qiu, Chunni Jia, Hasan Bin Awais, Chengwu Zheng, Hao Du, Jiqiang Wang, Tianying Xiong. Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1053-1063. |
[15] | Lizi Liu, Xianhua Chen, Jingfeng Wang, Liying Qiao, Shangyu Gao, Kai Song, Chaoyue Zhao, Xiaofang Liu, Di Zhao, Fusheng Pan. Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys [J]. J. Mater. Sci. Technol., 2019, 35(6): 1074-1080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||