J. Mater. Sci. Technol. ›› 2021, Vol. 62: 96-106.DOI: 10.1016/j.jmst.2020.05.060
• Research Article • Previous Articles Next Articles
Li Liua, Wan Penga, Xiao Zhanga, Jiangmei Penga, Pingsheng Liua,*(), Jian Shena,b,**(
)
Received:
2020-04-11
Revised:
2020-04-30
Accepted:
2020-05-08
Published:
2021-01-30
Online:
2021-02-01
Contact:
Pingsheng Liu,Jian Shen
About author:
** Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China. E-mail addresses: shenjian@nju.edu.cn (J. Shen).1 Authors contributed equally.
Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates[J]. J. Mater. Sci. Technol., 2021, 62: 96-106.
Fig. 2. Preparation of pDEMMP-b-pTMAEMA block polymers through a three-step process. (a) Preparation of pDEMMP polymer as the macro-CTA through RAFT polymerization. (b) Preparation of pDEMMP-b-pDMAEMA precursor block polymers through RAFT polymerization. (c) Preparation of cationic polymers (pDEMMP-b-pTMAEMA) through the quaternization of pDEMMP-b-pDMAEMA block copolymers.
Polymersa | Feeding mol. ratio n(monomer):n(CTA)b: n(AIBN) | Theoretic degree of polymerization | Actual degree of polymerizationc | Yield (%) |
---|---|---|---|---|
pDEMMP15 | 20:1:0.5 | 20 | 15 | 69 |
pDEMMP15-b-pDMAEMA8 | 15:1:0.5 | 15 | 8 | 69 |
pDEMMP15-b-pDMAEMA45 | 70:1:0.5 | 70 | 45 | 60 |
pDEMMP15-b-pDMAEMA70 | 100:1:0.5 | 100 | 70 | 63 |
Table 1 Synthesis and chemical composition of the block copolymers.
Polymersa | Feeding mol. ratio n(monomer):n(CTA)b: n(AIBN) | Theoretic degree of polymerization | Actual degree of polymerizationc | Yield (%) |
---|---|---|---|---|
pDEMMP15 | 20:1:0.5 | 20 | 15 | 69 |
pDEMMP15-b-pDMAEMA8 | 15:1:0.5 | 15 | 8 | 69 |
pDEMMP15-b-pDMAEMA45 | 70:1:0.5 | 70 | 45 | 60 |
pDEMMP15-b-pDMAEMA70 | 100:1:0.5 | 100 | 70 | 63 |
Fig. 3. 1H NMR spectra of pDEMMP-b-pDMAEMA and pDEMMP-b-pTMAEMA block polymers with varied segment lengths. (a) pDEMMP15. (b) pDEMMP15-b-pDMAEMA8. (c) pDEMMP15-b-pDMAEMA45. (d) pDEMMP15-b-pDMAEMA70. (e) pDEMMP15-b-pTMAEMA8 (P8). (f) pDEMMP15-b-pTMAEMA45 (P45). (g) pDEMMP15-b-pTMAEMA70 (P70).
Fig. 4. XPS analysis of TC4 substrates. (a) Survey scan spectra of the TC4 (black), P8 coated block copolymer (red) and the P70 coated block copolymer (blue). (b) N1s, (c) P2p and (d) S2p high resolution scan spectra of TC4 substrates coated with cationic block copolymers. TC4 (black), P8 (red), and P70 (blue).
Elemental composition (%) | |||||||
---|---|---|---|---|---|---|---|
Sample | Ti | C | O | N | I | P | S |
TC4 | 15.13 | 31.09 | 50.88 | — | — | — | — |
TC4-P 8 | 19.67 | 21.47 | 54.26 | 1.55 | 0.2 | 1.98 | 0.87 |
TC4-P 70 | 15.85 | 30.77 | 48.04 | 2.11 | 0.21 | 2.37 | 0.65 |
Table 2 Surface elemental compositions of TC4 substratesa.
Elemental composition (%) | |||||||
---|---|---|---|---|---|---|---|
Sample | Ti | C | O | N | I | P | S |
TC4 | 15.13 | 31.09 | 50.88 | — | — | — | — |
TC4-P 8 | 19.67 | 21.47 | 54.26 | 1.55 | 0.2 | 1.98 | 0.87 |
TC4-P 70 | 15.85 | 30.77 | 48.04 | 2.11 | 0.21 | 2.37 | 0.65 |
Fig. 5. (a) Water contact angle of the cationic block copolymers coated TC4 substrates; (b) Images of water contact angle of TC4, TC4-P8, TC4-P45, TC4-P70 substrates. Data are shown as mean ± SEM (n = 6). Statistical significance was determined by one-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant unless denoted as “ns” (not significant).
Fig. 6. Contact time and cationic segment length dependent antibacterial (S. aureus) property of TC4 substrates. (a) Colony images of S. aureus cells that contacted with TC4 substrates for varied time (2, 4, and 8 h). (b) Colony numbers of S. aureus cells that contacted with TC4 substrates for varied time (2, 4, and 8 h). (c) Antibacterial efficiency of the TC4 substrates coated with different cationic polymers. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *.
Fig. 7. Contact time and cationic segment length dependent antibacterial (E. coli) property of TC4 substrates. (a) Colony images of E. coli cells that contacted with TC4 substrates for varied time (2, 4, and 8 h). (b) Colony numbers of E. coli cells that contacted with TC4 substrates for varied time (2, 4, and 8 h). (c) Antibacterial efficiency of the TC4 substrates coated with different cationic polymers. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *.
Fig. 8. SEM images of S. aureus and E. coli morphology on various substrates TC4, TC4-P8, TC4-P45, and TC4-P70. Scale bars are 10 μm and 100 nm, respectively. TC4 substrates were immersed in 2 mL of bacterial suspension (106 CFU/mL) and were incubated for 8 h.
Fig. 9. Confocal laser-scanning microscopy images of bacteria (S. aureus and E. coli.) on TC4 and TC4-P70 substrates, respectively. Bacteria cells were seeded on substrates and were incubated for 8 h before staining.
Fig. 10. Cytocompatibilty of the TC4 substrates. (a) Viability of C2C12 cells on different TC4 substrates as determined by CCK-8 kit after 1 and 3 days’ culture. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *. (b) Confocal laser-scanning microscopy images of C2C12 cell on TC4 and TC4-P70 after 3 day’s culture.
Fig. 11. Antibacterial properties of pure titanium, stainless steel and Ni/Cr alloys coated with cationic polymers. (a) Colony image, (b) colony number, and (c) antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against S. aureus. (d) Colony image, (e) colony number, and (f) antibacterial efficiency of titanium, stainless steel and Ni/Cr alloy substrates against E. coli. Data are shown as mean ± SEM (n = 3). Statistical significance was determined by two-way ANOVA multiple comparison tests. Pairwise comparisons are statistically significant as denoted as *.
[1] |
H. Liao, X. Miao, J. Ye, T. Wu, Z. Deng, C. Li, J. Jia, X. Cheng, X. Wang, ACS Appl. Mater. Interfaces 9 (15) (2017) 13009-13015.
DOI URL |
[2] |
R. Zhou, D. Wei, J. Cao, W. Feng, S. Cheng, Q. Du, B. Li, Y. Wang, D. Jia, Y. Zhou, ACS Appl. Mater. Interfaces 7 (16) (2015) 8932-8941.
DOI URL |
[3] |
H. Chouirfa, H. Bouloussa, V. Migonney, C. Falentin-Daudre, Acta BioMater. 83 (2019) 37-54.
DOI URL PMID |
[4] |
K.G. Neoh, X. Hu, D. Zheng, E.T. Kang, Biomaterials 33 (10) (2012) 2813-2822.
DOI URL |
[5] |
X. Shen, Y. Zhang, P. Ma, L. Sutrisno, Z. Luo, Y. Hu, Y. Yu, B. Tao, C. Li, K. Cai, Biomaterials 212 (2019) 1-16.
DOI URL PMID |
[6] |
M. Shimabukuro, Y. Tsutsumi, R. Yamada, M. Ashida, H. Doi, K. Nozaki, A. Nagai, T. Hanawa, ACS BioMater. Sci. Eng. 5 (11) (2019) 5623-5630.
DOI URL PMID |
[7] |
Z.R. Ramadhan, J.W. Han, D.J. Lee, S.A.N. Entifar, J. Hong, C. Yun, Y.H. Kim, Mater. Res. Lett. 7 (3) (2019) 124-130.
DOI URL |
[8] | C.J. Shuai, L. Liu, M.C. Zhao, P. Feng, Y.W. Yang, W. Guo, C.D. Gao, F.L. Yuan, J. Mater. Sci. Technol. 34 (10) (2018) 1944-1952. |
[9] | J.W. Wang, S.Y. Zhang, Z.Q. Sun, H. Wang, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (10) (2019) 2336-2344. |
[10] |
C. Peng, Y. Liu, H. Liu, S.Y. Zhang, C.G. Bai, Y.Z. Wan, L. Ren, K. Yang, J. Mater. Sci. Technol. 35 (10) (2019) 2121-2131.
DOI URL |
[11] |
E.Z. Zhou, D.X. Qiao, Y. Yang, D.K. Xu, Y.P. Lu, J.J. Wang, J.A. Smith, H.B. Li, H.L. Zhao, P.K. Liaw, F.H. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
[12] | M.J. Li, L. Nan, D.K. Xu, G.G. Ren, K. Yang, J. Mater. Sci. Technol. 31 (3) (2015) 243-251. |
[13] |
L.Y. Cui, G.B. Wei, Z.Z. Han, R.C. Zeng, L. Wang, Y.H. Zou, S.Q. Li, D.K. Xu, S.K. Guan, J. Mater. Sci. Technol. 35 (3) (2019) 254-265.
DOI URL |
[14] |
H. Zhang, G. Wang, P. Liu, D. Tong, C. Ding, Z. Zhang, Y. Xie, H. Tang, F. Ji, RSC Adv. 8 (17) (2018) 9223-9231.
DOI URL |
[15] |
M. Godoy-Gallardo, C. Mas-Moruno, K. Yu, J.M. Manero, F.J. Gil, J.N. Kizhakkedathu, D. Rodriguez, Biomacromolecules 16 (2) (2015) 483-496.
DOI URL PMID |
[16] | X.K. Ding, A.Z. Wang, W. Tong, F.J. Xu, Small 15 (20) (2019), 1900999. |
[17] |
W. Guo, W. Liu, L. Xu, P. Feng, Y.R. Zhang, W.J. Yang, C.J. Shuai, J. Mater. Sci. Technol. 46 (2020) 237-247.
DOI URL |
[18] |
F. Paladini, M. Pollini, D. Deponti, A. Di Giancamillo, G. Peretti, A. Sannino, J. Mater. Sci. Mater. Med. 24 (4) (2013) 1105-1112.
DOI URL PMID |
[19] |
N.J. Hickok, I.M. Shapiro, Adv. Drug Deliv. Rev. 64 (12) (2012) 1165-1176.
DOI URL PMID |
[20] | A.L. Caroni, C.R. de Lima, M.R. Pereira, J.L. Fonseca, Colloids Surf. B Biointerfaces 100 (2012) 222-228. |
[21] |
D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 34 (34) (2013) 8533-8554.
DOI URL |
[22] | M. Rosenberg, T.A. Petrie, Nanotechnology 23 (5) (2012), 055103. |
[23] | L.P. Franchi, B.B. Manshian, T.A. de Souza, S.J. Soenen, E.Y. Matsubara, J.M. Rosolen, C.S. Takahashi, Toxicol. In Vitro 29 (7) (2015) 1319-1331. |
[24] | A. Moretti, R.M. Weeks, M.L. Chikindas, K.E. Uhrich, Langmuir (2019) 1-36. |
[25] | Y.W. Zhu, C. Xu, N. Zhang, X.K. Ding, B.R. Yu, F.J. Xu, Adv. Funct. Mater. 28 (14) (2018). |
[26] |
Q. Zeng, Y.W. Zhu, B.R. Yu, Y.J. Sun, X.K. Ding, C. Xu, Y.W. Wu, Z.H. Tang, F.J. Xu, Biomacromolecules 19 (7) (2018) 2805-2811.
DOI URL PMID |
[27] | X.K. Ding, S. Duan, X.J. Ding, R.H. Liu, F.J. Xu, Adv. Funct. Mater. 28 (40) (2018). |
[28] |
X.L. Fan, M. Hu, Z.H. Qin, J. Wang, X.C. Chen, W.X. Lei, W.Y. Ye, Q. Jin, K.F. Ren, J. Ji, ACS Appl. Mater. Interfaces 10 (12) (2018) 10428-10436.
DOI URL |
[29] | T. Chen, H. Yang, X. Wu, D. Yu, A. Ma, X. He, K. Sun, J. Wang, Langmuir 35 (8) (2019) 3031-3037. |
[30] |
J. Lv, J. Jin, J. Chen, B. Cai, W. Jiang, ACS Appl. Mater. Interfaces 11 (28) (2019) 25556-25568.
DOI URL |
[31] |
P. Fei, L. Liao, J. Meng, B. Cheng, X. Hu, J. Song, Carbohydr. Polym. 181 (2018) 1102-1111.
DOI URL PMID |
[32] |
Y. Ding, Z. Sun, R. Shi, H. Cui, Y. Liu, H. Mao, B. Wang, D. Zhu, F. Yan, ACS Appl. Mater. Interfaces 11 (3) (2019) 2860-2869.
DOI URL |
[33] |
M. Wassmann, A. Winkel, K. Haak, W. Dempwolf, M. Stiesch, H. Menzel, J. BioMater. Sci. Polym. Ed. 27 (15) (2016) 1507-1519.
DOI URL PMID |
[34] |
S. Chen, S. Zhang, M. Galluzzi, F. Li, X. Zhang, X. Yang, X. Liu, X. Cai, X. Zhu, B. Du, J. Li, P. Huang, Chem. Eng. J. 358 (2019) 634-642.
DOI URL |
[35] | A. Vaterrodt, B. Thallinger, K. Daumann, D. Koch, G.M. Guebitz, M. Ulbricht, Langmuir 32 (5) (2016) 1347-1359. |
[36] |
R. Chen, M.D. Willcox, K.K. Ho, D. Smyth, N. Kumar, Biomaterials 85 (2016) 142-151.
DOI URL PMID |
[37] |
E. Gerits, S. Kucharikova, P. Van Dijck, M. Erdtmann, A. Krona, M. Lovenklev, M. Frohlich, B. Dovgan, F. Impellizzeri, A. Braem, J. Vleugels, S.C. Robijns, H.P. Steenackers, J. Vanderleyden, K. de Brucker, K. Thevissen, B.P. Cammue, M. Fauvart, N. Verstraeten, J. Michiels, J. Orthop. Res. 34 (12) (2016) 2191-2198.
DOI URL PMID |
[38] |
H. Chouirfa, M.D.M. Evans, P. Bean, A. Saleh-Mghir, A.C. Cremieux, D.G. Castner, C. Falentin-Daudre, V. Migonney, ACS Appl. Mater. Interfaces 10 (2) (2018) 1480-1491.
DOI URL |
[39] | A. Rodriguez-Cano, P. Cintas, M.C. Fernandez-Calderon, M.A. Pacha-Olivenza, L. Crespo, L. Saldana, N. Vilaboa, M.L. Gonzalez-Martin, R. Babiano, Colloids Surf. B Biointerfaces 106 (2013) 248-257. |
[40] |
H. Ao, S. Yang, Be. Nie, Q. Fan, Q. Zhang, J. Zong, S. Guo, X. Zheng, T. Tang, J. Mater. Chem. B Mater. Biol. Med. 7 (11) (2019) 1951-1961.
DOI URL PMID |
[41] | Y.G. Zhang, Y.J. Zhu, F. Chen, B.Q. Lu, Colloids Surf. B Biointerfaces 159 (2017) 337-348. |
[42] | G. Xu, X.N. Liu, P. Liu, D. Pranantyo, K.G. Neoh, E.T. Kang, Langmuir 33 (27) (2017) 6925-6936. |
[43] | S.M.D.H. Lee, W.M. Miller, P.B. Messersmith, Science 318 (5849) (2007) 337-348. |
[44] |
C. Queffelec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Chem. Rev. 112 (7) (2012) 3777-3807.
DOI URL PMID |
[45] | Brett M. Silverman, Kristen A. Wieghaus, J. Schwartz, Langmuir 21 (1) (2005) 225-228. |
[46] |
P. Liu, E. Domingue, D.C. Ayers, J. Song, ACS Appl. Mater. Interfaces 6 (10) (2014) 7141-7152.
DOI URL |
[47] |
Z. Zhi, Y. Su, Y. Xi, L. Tian, M. Xu, Q. Wang, S. Padidan, P. Li, W. Huang, ACS Appl. Mater. Interfaces 9 (12) (2017) 10383-10397.
DOI URL |
[48] |
H.W. Liu, L. Liu, X.F. Jiang, J. Fan, W. Peng, P.M. Liu, T. Yang, H.L. Chen, W. Jiang, G.Y. Yin, P.S. Liu, J. Shen, J Mater Chem B 7 (25) (2019) 4055-4065.
DOI URL |
[49] |
T. Huang, H. Liu, P. Liu, P. Liu, L. Li, J. Shen, J Mater Chem B 5 (27) (2017) 5380-5389.
DOI URL PMID |
[50] | R.T. Mathew, R.P. Cooney, J. Malmstrom, C.S. Doyle, Langmuir 34 (16) (2018) 4750-4761. |
[51] |
R.K. Blundell, P. Licence, Phys. Chem. Chem. Phys. 16 (29) (2014) 15278-15288.
DOI URL PMID |
[52] |
T. Huang, H.W. Liu, P.M. Liu, P.S. Liu, L. Li, J. Shen, J Mater Chem B. 5 (27) (2017) 5380-5389.
DOI URL PMID |
[53] | Y.C. Yang, Z.G. Cai, Z.H. Huang, X.Y. Tang, X. Zhang, Polym. J. 50 (1) (2018) 33-44. |
[54] |
D.J. Phillips, J. Harrison, S.J. Richards, D.E. Mitchell, E. Tichauer, A.T.M. Hubbard, C. Guy, I. Hands-Portman, E. Fullam, M.I. Gibson, Biomacromolecules 18 (5) (2017) 1592-1599.
DOI URL PMID |
[55] |
P.S. Liu, J. Song, Biomaterials 34 (10) (2013) 2442-2454.
DOI URL |
[56] |
J.G. Cai, Y.A. Yue, D. Rui, Y.F. Zhang, S.Y. Liu, C. Wu, Macromolecules 44 (7) (2011) 2050-2057.
DOI URL |
[57] |
D. Fischer, Y.X. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, Biomaterials 24 (7) (2003) 1121-1131.
DOI URL |
[1] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[2] | Yongren Wu, Shun Chen, Yang Liu, Zhiwei Lu, Shaokun Song, Yang Zhang, Chuanxi Xiong, Lijie Dong. One-step preparation of porous aminated-silica nanoparticles and their antibacterial drug delivery applications [J]. J. Mater. Sci. Technol., 2020, 50(0): 139-146. |
[3] | Enze Zhou, Dongxu Qiao, Yi Yang, Dake Xu, Yiping Lu, Jianjun Wang, Jessica A. Smith, Huabing Li, Hongliang Zhao, Peter K. Liaw, Fuhui Wang. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms [J]. J. Mater. Sci. Technol., 2020, 46(0): 201-210. |
[4] | Dong Youming,Yan Yutao,Ma Huandi,Zhang Shifeng,Li Jianzhang,Xia Changlei,Q. Shi Sheldon,Cai Liping. In-Situ Chemosynthesis of ZnO Nanoparticles to Endow Wood with Antibacterial and UV-Resistance Properties [J]. J. Mater. Sci. Technol., 2017, 33(3): 266-270. |
[5] | S. Gowri, R. Rajiv Gandhi, M. Sundrarajan. Structural, Optical, Antibacterial and Antifungal Properties of Zirconia Nanoparticles by Biobased Protocol [J]. J. Mater. Sci. Technol., 2014, 30(8): 782-790. |
[6] | Ren Ling, Ma Zheng, Li Mei, Zhang Yu, Liu Weiqiang, Liao Zhenhua, Yang Ke. Antibacterial Properties of Ti–6Al–4V– x Cu Alloys [J]. J. Mater. Sci. Technol., 2014, 30(7): 699-705. |
[7] | Wei Zhu, Zhenxiang Zhang, Beibei Gu, Junying Sun, Lixian Zhu. Biological Activity and Antibacterial Property of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc Oxidation [J]. J. Mater. Sci. Technol., 2013, 29(3): 237-244. |
[8] | Mirigul Altan, Huseyin Yildirim. Mechanical and Antibacterial Properties of Injection Molded olypropylene/TiO2 Nano-Composites: Effects of Surface Modification [J]. J Mater Sci Technol, 2012, 28(8): 686-692. |
[9] | Hefeng Wang, Bin Tang, Xiuyan Li, Yong Ma. Antibacterial Properties and Corrosion Resistance of Nitrogen-doped TiO2 Coatings on Stainless Steel [J]. J Mater Sci Technol, 2011, 27(4): 309-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||