J. Mater. Sci. Technol. ›› 2021, Vol. 62: 83-95.DOI: 10.1016/j.jmst.2020.05.055
• Research Article • Previous Articles Next Articles
Donglin Hana, Yuan Lia, Xiangmei Liub,*(), Kelvin Wai Kwok Yeungc, Yufeng Zhengd, Zhenduo Cuia, Yanqin Lianga, Zhaoyang Lia, Shengli Zhua, Xianbao Wangb, Shuilin Wua,*(
)
Received:
2020-04-17
Revised:
2020-05-08
Accepted:
2020-05-21
Published:
2021-01-30
Online:
2021-02-01
Contact:
Xiangmei Liu,Shuilin Wu
About author:
shuilinwu@tju.edu.cn (S. Wu).Donglin Han, Yuan Li, Xiangmei Liu, Kelvin Wai Kwok Yeung, Yufeng Zheng, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shengli Zhu, Xianbao Wang, Shuilin Wu. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds[J]. J. Mater. Sci. Technol., 2021, 62: 83-95.
Fig. 1. Characterization of MOF and MOF-PDA. (A) Schematic illustrating the process synthesizing MOF and MOF-PDA, as well as the structure of MOF and MOF-PDA, (B) the SEM images of the MOF, (C) the SEM images of the MOF-PDA, (D) the size distribution, (E) XRD spectra, (F) FTIR spectra of the MOF and the MOF-PDA.
Fig. 2. The morphology and water dispersibility of MOF and MOF-PDA. The TEM image and elemental mapping images of (A) MOF, (B) MOF-PDA, (C) the water dispersibility of MOF and MOF-PDA.
Fig. 3. The characterization of photothermal properties of MOF, PDA, and MOF-PDA. (A) The UV-vis spectra of MOF, MOF-PDA, and PDA, (B) the heating curves of MOF, PDA, and MOF-PDA, (C) the thermal images taken during light irradiation process of MOF, MOF-PDA, and PDA, (D) the heating and cooling curves of MOF, MOF-PDA, and PDA (660 nm, 0.7 W/cm2).
Fig. 4. The characterization of photocatalytic properties of MOF, MOF-PDA, and PDA. The detection of 1O2 at room temperature using DPBF as detector under light irradiation for (A) MOF, (B) MOF-PDA, and (C) PDA nanoparticles, the detection of 1O2 at room temperature using DPBF as detector in the dark for (D) MOF, (E) MOF-PDA, and (F) PDA nanoparticles (660 nm, 0.7 W/cm2).
Fig. 5. The mechanism of the enhanced photocatalytic properties of MOF-PDA. (A) the band energy of MOF and MOF-PDA, (B) electronic impedance spectrum, (C) photocurrent testing of MOF and MOF-PDA under light irradiation at different temperatures, Detection of the 1O2 production with DPBF as detector under light irradiation in ice bath for (D) MOF, (E) MOF-PDA, (F) PDA.
Fig. 7. Characterization of nanoparticles’ antibacterial properties. (A) the plate spreading results of the S. aureus mixed with MOF, MOF-PDA, and PDA, exposed to 660 nm light irradiation (0.7 W/cm2) or kept in dark, and statistic analysis of the spreading results, (B) the plate spreading results of the E. coli mixed with MOF, MOF-PDA and PDA, and exposed to 660 nm light irradiation (0.7 W/cm2) or kept in dark, and statistic analysis of the spreading results. (dosage: MOF-PDA, 350 ppm; MOF, 250 ppm; PDA, 100 ppm).
Fig. 8. Detection of bacterial membrane integrity using ANS and ONPG. After adding ANS, the S. aureus were mixed with (A) MOF, (B) MOF-PDA, (C) PDA and exposed to 660 nm light or kept in the dark; after adding ANS, the E. coli were mixed with (D) MOF, (E) MOF-PDA,(F) PDA and exposed to 660 nm light or kept in the dark, After the bacteria were mixed with MOF, MOF-PDA, and PDA, and exposed to 660 nm light or kept in the dark, the ONPG was added, (G) S. aureus, (H) E. coli.(-L termed as the mixture was exposed to light at room temperature; -I termed as the mixture was exposed to light in ice bath; -C termed as the mixture was kept in the dark throughout).
Fig. 10. Cytotoxicity of the MOF, MOF-PDA and PDA. MTT results of the NIH 3T3 cells mixed with different nanoparticles and either exposed to light or not exposed to light for: (A) 1 day, (B) 3 day. (C) Fluorescent staining of the cells mixed with different nanoparticles and either exposed to light or kept in the dark (dosage: MOF-PDA, 350 ppm; MOF, 250 ppm; PDA, 100 ppm).
Fig. 11. The optical photographs of the infected wounds following various treatments at 2, 4, 8, 12 days. Control group, wounds covered with gauze; 3 M group, wounds covered with 3 M dressing; MOF group, wounds treated with MOF under light irradiation and covered with gauze, MOF-PDA group, wounds treated with MOF-PDA under light irradiation and covered with gauze; and then PDA group, wounds treated with PDA under light irradiation and covered with gauze.
[1] |
M.X. Ma, X.M. Liu, L. Tan, Z.D. Cui, X.J. Yang, Y.Q. Liang, Z.Y. Li, Y.F. Zheng, K.W.K. Yeung, S.L. Wu, BioMater. Sci. 7 (2019) 1437-1447.
DOI URL PMID |
[2] |
Y.J. Xi, Y. Wang, J.Y. Gao, Y.F. Xiao, J.Z. Du, ACS Nano 13 (2019) 13645-13657.
DOI URL PMID |
[3] |
L. Piddock, Nat. Rev. Microbiol. 15 (2017) 639-640.
DOI URL PMID |
[4] | J.M. Zhang, Y.H. Sun, Y. Zhao, Y.L. Liu, X.H. Yao, B. Tang, R.Q. Hang, Rare Metals 36 (2019) 552-560. |
[5] | X.H. Chen, Q. Wei, J.D. Hong, R. Xu, T.H. Zhou, Rare Metals 38 (2019) 413-419. |
[6] | H.F. Xu, G. Zhu, B.M. Hao, J. Mater. Sci. Technol. 35 (2019) 100-108. |
[7] |
H. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang, O.M. Yaghi, Science 327 (2010) 846-850.
DOI URL PMID |
[8] | Z.W. Ma, J.X. Zou, D. Khan, W. Zhu, C.Z. Hu, X.Q. Zeng, W.J. Ding, J. Mater. Sci. Technol. 35 (2019) 2132-2143. |
[9] | B. Huang, L. Tan, X.M. Liu, J. Li, S.L. Wu, Bioact. Mater. 4 (2019) 17-21. |
[10] | E.L. Zhang, S. Fu, R.X. Wang, H.X. Li, Y. Liu, Z.Q. Ma, G.K. Liu, C.S. Zhu, G.W. Qin, D. F. Chen, Rare Metals 36 (2019) 476-494. |
[11] | L. Shi, L.Q. Yang, H.B. Zhang, K. Chang, G.X. Zhao, T. Kako, J.H. Ye, Appl. Catal. B 224 (2018) 60-68. |
[12] | Y. Luo, X.M. Liu, L. Tan, Z.D. Cui, X.B. Feng, X.J. Yang, Y.Q. Liang, Z.Y. Li, S.L. Zhu, Y.F. Zheng, K.W.K. Yeung, C. Yang, X.B. Wang, S.L. Wu, ACS Central Sci. 5 (2019) 1591-1601. |
[13] | P. Miao, G.J. Guan, H. Deng, B. Han, C. Tian, J.Y. Zhuang, Y.Y. Xu, W.Z. Liu, Z. Lin, Environ. Sci. Nano 6 (2019) 207-215. |
[14] |
J. Park, Q. Jiang, D.W. Feng, L.Q. Mao, H.C. Zhou, J. Am. Chem. Soc. 138 (2016) 3518-3525.
DOI URL PMID |
[15] |
D. Feng, W. Chung, Z. Wei, Z. Gu, H. Jiang, Y. Chen, D.J. Darensbourg, H.C. Zhou, J. Am. Chem. Soc. 135 (2013) 17105-17110.
DOI URL PMID |
[16] |
C.J. Ou, Y.W. Zhang, D. Pan, K.K. Ding, S.C. Zhang, W.J. Xu, W.J. Wang, W.L. Si, Z. Yang, X.C. Dong, Mater. Chem. Front. 3 (2019) 1786-1792.
DOI URL |
[17] |
S.Y. Li, H. Cheng, W.X. Qiu, L. Zhang, S.S. Wan, J.Y. Zeng, X.Z. Zhang, Biomaterials 142 (2017) 149-161.
DOI URL PMID |
[18] |
Q.L. Zou, M. Abbas, L.Y. Zhao, S.K. Li, G.Z. Shen, X.H. Yan, J. Am. Chem. Soc. 139 (2017) 1921-1927.
URL PMID |
[19] |
A. Carangelo, A. Acquesta, T. Monetta, Bioact. Mater. 4 (2019) 71-78.
DOI URL PMID |
[20] |
D. Sharma, W.K. Jia, F. Long, S. Pati, Q.H. Chen, Y.B. Qyang, B. Lee, C.K. Choi, F. Zhao, Bioact. Mater. 4 (2019) 142-150.
URL PMID |
[21] | J.J. Feng, P.P. Zhang, A.J. Wang, Q.C. Liao, J.L. Xi, J.R. Chen, New J. Chem. 36 (2012) 148-154. |
[22] | S.C. Liu, J.M. Pan, J.X. Liu, Y. Ma, F.X. Qiu, L. Mei, X.W. Zeng, G.Q. Pan, Small 14 (2018), 1703968. |
[23] | S.M. Yu, G.W. Li, R. Liu, D. Ma, W. Xue, Adv. Funct. Mater. 28 (2018), 1707440. |
[24] | T. Li, P. Hu, J.W. Li, P.T. Huang, W.J. Tong, C.Y. Gao, Colloids Surf. A PhysicoChem. Eng. Asp. 577 (2019) 456-463. |
[25] | S.X. Liu, J.L. Yang, Q. Liu, Y.J. Huang, M.Q. Kong, Q. Yang, G.G. Li, Chem. Eng. J. 363 (2019) 1-12. |
[26] | J. Manna, S. Akbayrak, S. Özkar, Appl. Catal. B 208 (2017) 104-115. |
[27] | J.W. Fu, Z.H. Chen, M.H. Wang, S.J. Liu, J.H. Zhang, J. Zhang, R. Han, Q. Xu, Chem. Eng. J. 259 (2015) 53-61. |
[28] | F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, ACS Appl. Mater. Interfaces 8 (2016) 6693-6700. |
[29] | M. Maruthapandi, M. Natan, G. Jacobi, E. Banin, J.H.T. Luong, A. Gedanken, Nanomaterials 9 (2019) 1731. |
[30] | B. Gao, L.H. Chen, Y.L. Zhao, X. Yan, X.Y. Wang, C.R. Zhou, Y.F. Shi, W. Xue, Eur. Polym. J. 110 (2019) 192-201. |
[31] | S. Sohrabi, S. Dehghanpour, M. Ghalkhani, J. Mater. Sci. 53 (2018) 3624-3639. |
[32] | J.H. Jiang, L.P. Zhu, L.J. Zhu, H.T. Zhang, B.K. Zhu, Y.Y. Xu, ACS Appl. Mater. Interfaces 5 (2013) 12895-12904. |
[33] | D.D. Wang, H.H. Wu, J.J. Zhou, P.P. Xu, C.L. Wang, R.H. Shi, H.B. Wang, H. Wang, Z. Guo, Q.W. Chen, Adv. Sci. 5 (2018), 1800287. |
[34] | M. Wu, Q.T. Wang, D. Zhang, N.S. Liao, L.J. Wu, A. Huang, X.L. Liu, Colloids Surf. B Biointerfaces 141 (2016) 467-475. |
[35] | D. Zhang, M. Wu, Y.Y. Zeng, L.J. Wu, Q.T. Wang, X. Han, X.L. Liu, J.F. Liu, ACS Appl. Mater. Interfaces 7 (2015) 8176-8187. |
[36] |
Y. Zhang, F.M. Wang, C.Q. Liu, Z.Z. Wang, L.H. Kang, Y.Y. Huang, K. Dong, J.S. Ren, X.G. Qu, ACS Nano 12 (2018) 651-661.
URL PMID |
[37] | K. Liu, R.R. Xing, C.J. Chen, G.Z. Shen, L.Y. Yan, Q.L. Zou, G.H. Ma, H. Möhwald, X. H. Yan, Angew. Chem. Int. Ed. 54 (2015) 500-505. |
[38] |
Y.W. Ren, Y.J. Han, Z.D. Cui, X.M. Liu, Z.Y. Li, S.L. Zhu, Y.Q. Liang, S.L. Wu, Bioact. Mater. 5 (2020) 201-209.
DOI URL PMID |
[39] | M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chem. Commun. 20 (2007) 2069-2071. |
[40] | W.X. Lei, K.F. Ren, T.T. Chen, X.C. Chen, B.C. Li, H. Chang, J. Ji, Adv. Mater. Interfaces 3 (2016), 1600767. |
[41] |
Z.L. Dong, H. Gong, M. Gao, W.W. Zhu, X.Q. Sun, L.Z. Feng, T.T. Fu, Y.G. Li, Z. Liu, Theranostics 6 (2016) 1031-1042.
URL PMID |
[42] | L.H. Xiao, J.H. Sun, L.B. Liu, R. Lu, H. Hu, C.G. Cheng, Y. Huang, S. Wang, ACS Appl. Mater. Interfaces 9 (2017) 5382-5391. |
[43] | G. Soldan, M.A. Aljuhani, M.S. Bootharaju, L.G. AbdulHalim, M.R. Parida, A.H. Emwas, O.F. Mohammed, O.M. Bakr, Angew. Chem. Int. Ed. 55 (2016) 5749-5753. |
[44] | Q. Hao, S.M. Hao, X.X. Niu, X. Li, D.M. Chen, H. Ding, Chin. J. Catal. 38 (2017) 278-286. |
[45] | X. Yu, H.L. Fan, L. Wang, Z.X. Jin, Angew. Chem. Int. Ed. 53 (2014) 12600-12604. |
[46] |
Z.X. Gan, X.L. Wu, M. Meng, X.B. Zhu, L. Yang, P.K. Chu, ACS Nano 8 (2014) 9304-9310.
DOI URL PMID |
[47] | X.Z. Wang, Y.R. He, Y.W. Hu, G.R. Jin, B.C. Jiang, Y.M. Huang, Sol. Energy 170 (2018) 586-593. |
[48] | L. Tan, J. Li, X.M. Liu, Z.D. Cui, X.J. Yang, S.L. Zhu, Z.Y. Li, X.B. Yuan, Y.F. Zheng, K.W.K. Yeung, H.B. Pan, X.B. Wang, S.L. Wu, Adv. Mater. 30 (2018), 1801808. |
[49] |
L. Schnaider, S. Brahmachari, N.W. Schmidt, B. Meusa, S. Shaham-Niv, D. Bychenko, L. Adler-Abramovich, L.J.W. Shimon, S. Kolusheva, W.F. DeGrado, E. Gazit, Nat. Commun. 8 (2017) 1-10.
DOI URL PMID |
[50] |
T. Galbadage, D.D. Liu, L.B. Alemany, R. Pal, J.M. Tour, R.S. Gunasekera, J.D. Cirillo, ACS Nano 13 (2019) 14377-14387.
DOI URL PMID |
[51] |
K.D. LaCourse, S.B. Peterson, H.D. Kulasekara, M.C. Radey, J. Kim, J.D. Mougous, Nat. Microbiol. 3 (2018) 440-446.
DOI URL PMID |
[52] | W. Hu, C. Li, J. Dai, H. Cui, L. Lin, Ind. Crops Prod. 130 (2019) 34-41. |
[53] | X.K. Ding, S. Duan, X.J. Ding, R.H. Liu, F.J. Xu, Adv. Funct. Mater. 28 (2018), 1802140. |
[54] | K. Kanagamani, P. Muthukrishnan, K. Saravanakumar, K. Shankar, A. Kathiresan, Rare Metals 38 (2019) 277-286. |
[55] | X.M. Dai, Q.Q. Guo, Y. Zhao, P. Zhang, T.Q. Zhang, X.G. Zhang, C.X. Li, ACS Appl. Mater. Interfaces 8 (2016) 25798-25807. |
[56] |
X.L. Ye, X.M. Qin, X.R. Yan, J.K. Guo, L.H. Huang, D.J. Chen, T. Wu, Q.S. Shi, S.Z. Tan, X. Cai, Chem. Eng. J. 304 (2016) 873-881.
DOI URL |
[57] |
V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, Biomaterials 25 (2004) 4383-4391.
DOI URL |
[1] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
[2] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[3] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[4] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
[5] | Mengting Cao, Fengli Yang, Quan Zhang, Juhua Zhang, Lu Zhang, Lingfeng Li, Xiaohao Wang, Wei-Lin Dai. Facile construction of highly efficient MOF-based Pd@UiO-66-NH2@ZnIn2S4 flower-like nanocomposites for visible-light-driven photocatalytic hydrogen production [J]. J. Mater. Sci. Technol., 2021, 76(0): 189-199. |
[6] | Qian Wu, Xiangmei Liu, Bo Li, Lei Tan, Yong Han, Zhaoyang Li, Yanqin Liang, Zhenduo Cui, Shengli Zhu, Shuilin Wu, Yufeng Zheng. Eco-friendly and degradable red phosphorus nanoparticles for rapid microbial sterilization under visible light [J]. J. Mater. Sci. Technol., 2021, 67(0): 70-79. |
[7] | Run Huang, Lei Liu, Bo Li, Liang Qin, Lei Huang, Kelvin W.K. Yeung, Yong Han. Nanograins on Ti-25Nb-3Mo-2Sn-3Zr alloy facilitate fabricating biological surface through dual-ion implantation to concurrently modulate the osteogenic functions of mesenchymal stem cells and kill bacteria [J]. J. Mater. Sci. Technol., 2021, 73(0): 31-44. |
[8] | Mingjun Li, Christoph Schlaich, Jianguang Zhang, Ievgen S. Donskyi, Karin Schwibbert, Frank Schreiber, Yi Xia, Jörg Radnik, Tanja Schwerdtle, Rainer Haag. Mussel-inspired multifunctional coating for bacterial infection prevention and osteogenic induction [J]. J. Mater. Sci. Technol., 2021, 68(0): 160-171. |
[9] | Mingjun Li, Li Nan, Chunyong Liang, Ziqing Sun, Lei Yang, Ke Yang. Antibacterial behavior and related mechanisms of martensitic Cu-bearing stainless steel evaluated by a mixed infection model of Escherichia coli and Staphylococcus aureus in vitro [J]. J. Mater. Sci. Technol., 2021, 62(0): 139-147. |
[10] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[11] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[12] | Mi Wu, Wen Liu, Jinrong Yao, Zhengzhong Shao, Xin Chen. Silk microfibrous mats with long-lasting antimicrobial function [J]. J. Mater. Sci. Technol., 2021, 63(0): 203-209. |
[13] | Yongjin Sun, Juntao Zhang, Bi Chen, Yunlong Yang, Haiyan Li, Xin Niu, Qing Li, Weidong Wu, Zongping Xie, Yunfeng Chen, Fuyue Wu, Yang Wang. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence [J]. J. Mater. Sci. Technol., 2021, 63(0): 216-227. |
[14] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[15] | Kai Chen, Changci Tong, Jinge Yang, Peifang Cong, Ying Liu, Xiuyun Shi, Xu Liu, Jun Zhang, Rufei Zou, Keshen Xiao, Yuyang Ni, Lei Xu, Mingxiao Hou, Hongxu Jin, Yunen Liu. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition [J]. J. Mater. Sci. Technol., 2021, 63(0): 236-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||