J. Mater. Sci. Technol. ›› 2021, Vol. 62: 254-267.DOI: 10.1016/j.jmst.2020.04.061
• Invited Review • Previous Articles
Bangalore Gangadharacharya Koushika,*(), Nils Van den Steena, Mesfin Haile Mammea,b, Yves Van Ingelgema, Herman Terryna,*(
)
Received:
2020-02-21
Revised:
2020-04-18
Accepted:
2020-04-30
Published:
2021-01-30
Online:
2021-02-01
Contact:
Bangalore Gangadharacharya Koushik,Herman Terryn
About author:
herman.terryn@vub.be (H. Terryn).Bangalore Gangadharacharya Koushik, Nils Van den Steen, Mesfin Haile Mamme, Yves Van Ingelgem, Herman Terryn. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate[J]. J. Mater. Sci. Technol., 2021, 62: 254-267.
Fig. 3. Droplet volume as a function of evaporation time. Inset: Cross-section of 1. hemispherical, 2. flattened hemispheric cap and 3. planar cylindrical droplet geometries [17].
Fig. 4. (a) Anode-to-cathode resistance, (b) anode-to-cathode iR voltage drop and (c) total limiting oxygen reduction current as a function of evaporation time (increasing concentration of electrolyte), (d) anode-to-cathode iR voltage drop as a function of droplet height (assuming constant concentration) [17].
Fig. 5. The schematic diagram of the geometry of TPB zone. (a) A vertical electrode under partial immersion in electrolyte and (b) an electrolyte droplet attached on a planar electrode surface [49].
No. | Approach | Key considerations | Key outcome | Shortcomings |
---|---|---|---|---|
1 | Analytical by Lyon et al. [ | (1) Evaporating droplet. (2) Wetting and drying effects. (3) Different droplet geometries. (4) Oxygen diffusion by Fick’s law. (5) Electrolyte conductivity by Debey-Huckel-Onsager equation. | Evaporative condition: | (1) Gives a qualitative trend but not quantitative understanding. (2) The initial droplet radius is always 1?mm. (3) Arbitrary quantity of ionic species. (4) Fixed ratio of cathode to anode area. |
(1) For hemispherical droplet: anode-to-cathode resistance did not limit the corrosion rate. (2) For planar droplet: corrosion rate was subjective to resistive control. | ||||
Non-evaporative condition: | ||||
Corrosion rate was under resistive control for all geometries. | ||||
2 | Analytical by Jiang et al. [ | (1) Droplet divided into bulk and three phase boundary (TPB) zones. (2) Droplet contact angle (<90 deg.) (3) Droplet distribution (liquid dispersion). (4) Relationship between liquid dispersion and TPB length. (5) Relationship between cathodic current density and TPB length. | (1) The effect of TPB characteristic length (‘g’) on cathodic process was depended only on the electrochemical process, independent of material properties. (2) Calculated cathodic limiting current density linearly increases with increasing’ g’. (3) Increase in liquid dispersion on the metal surface leads to increase in total cathodic limiting current. | (1) Limited to a contact angle between zero and ninety degrees. (2) Assumes equal drop-size distribution to account for liquid dispersion during atmospheric corrosion. (3) Static droplet. |
Table 1 Comparison of key differences between analytical modelling approaches of corrosion under droplet electrolyte.
No. | Approach | Key considerations | Key outcome | Shortcomings |
---|---|---|---|---|
1 | Analytical by Lyon et al. [ | (1) Evaporating droplet. (2) Wetting and drying effects. (3) Different droplet geometries. (4) Oxygen diffusion by Fick’s law. (5) Electrolyte conductivity by Debey-Huckel-Onsager equation. | Evaporative condition: | (1) Gives a qualitative trend but not quantitative understanding. (2) The initial droplet radius is always 1?mm. (3) Arbitrary quantity of ionic species. (4) Fixed ratio of cathode to anode area. |
(1) For hemispherical droplet: anode-to-cathode resistance did not limit the corrosion rate. (2) For planar droplet: corrosion rate was subjective to resistive control. | ||||
Non-evaporative condition: | ||||
Corrosion rate was under resistive control for all geometries. | ||||
2 | Analytical by Jiang et al. [ | (1) Droplet divided into bulk and three phase boundary (TPB) zones. (2) Droplet contact angle (<90 deg.) (3) Droplet distribution (liquid dispersion). (4) Relationship between liquid dispersion and TPB length. (5) Relationship between cathodic current density and TPB length. | (1) The effect of TPB characteristic length (‘g’) on cathodic process was depended only on the electrochemical process, independent of material properties. (2) Calculated cathodic limiting current density linearly increases with increasing’ g’. (3) Increase in liquid dispersion on the metal surface leads to increase in total cathodic limiting current. | (1) Limited to a contact angle between zero and ninety degrees. (2) Assumes equal drop-size distribution to account for liquid dispersion during atmospheric corrosion. (3) Static droplet. |
Fig. 8. Oxygen concentration in the droplet as a function of kR/D, where ‘k’ is the cathodic reaction rate constant, ‘R’ is the radius of the droplet, and ‘D’ is the diffusion coefficient of dissolved oxygen [50].
No. | Approach | Key considerations | Key outcome | Shortcomings |
---|---|---|---|---|
1 | Numerical simulation by Venkatraman et al. [ | (1) Three-dimensional transient finite element model. (2) Droplet on bare zinc surface in the absence of oxide layer. (3) Spatio-temporal variation of ionic species concentration. (4) Early stage of corrosion: no formation of precipitates. | (1) Concentration profile of zinc ions and plot of current density vectors. (2) Concentration of the zinc ions was high near the metal surface, with an accumulation towards the cathodic region. | (1) Does not consider heterogeneous or homogeneous chemical reactions in the droplet. (2) Static droplet. (3) Anode-cathode separation was not described. |
2 | Numerical simulation by Chang et al. [ | (1) Two-dimensional transient finite element model of droplet on iron. (2) Contribution of migration; primary precipitates; local electroneutrality and homogeneous reaction. (3) Anodic and cathodic regions were not assumed prior. (4) Active-passive transition due to corrosion precipitates. (5) Simulated both at corrosion and at an applied potential. (6) Extended to simulate corrosion in the presence of CO2 instead of O2. | (1) Galvanic effects due to precipitates. (2) Alkaline cathodic region at the periphery and slightly acidic at the center. (3) Active-passive transition of anode due to of Fe(OH)3 precipitates, with active cathodic region. (4) With dissolved CO2 found that the species FeCO3 accumulated in the anodic reaction | (1) Static droplet. (2) Needs extension to include parameters like surface wettability and spatio-temporal variation of involved ionic species with 3D model. |
3 | Combination of empirical and numerical simulation by Cole et al. [ | (1) Multiscale model w.r.t. production, transport, and deposition of aerosols. (2) Dynamic droplet. (3) Spatio-temporal variations of involved ionic species. (4) Porous oxide layer. | (1) Oxygen concentration in the droplet as a function of droplet radius, cathodic reaction rate constant, diffusion of O2. (2) Porous oxide promotes sufficient alkalinity at the oxide-metal interface, promoting the formation of a compact oxide layer. | (1) Empirical models describing transport of aerosols doesn’t give a general understanding. (2) Droplet model needs extension to include surface energy and evolution of anode-cathode separation. (3) The porous oxide model needs extension to account for oxide layer evolution due to corrosion precipitates and pH variations within the droplet. |
Table 2 Comparison of key differences between numerical modelling approaches of corrosion under droplet electrolyte.
No. | Approach | Key considerations | Key outcome | Shortcomings |
---|---|---|---|---|
1 | Numerical simulation by Venkatraman et al. [ | (1) Three-dimensional transient finite element model. (2) Droplet on bare zinc surface in the absence of oxide layer. (3) Spatio-temporal variation of ionic species concentration. (4) Early stage of corrosion: no formation of precipitates. | (1) Concentration profile of zinc ions and plot of current density vectors. (2) Concentration of the zinc ions was high near the metal surface, with an accumulation towards the cathodic region. | (1) Does not consider heterogeneous or homogeneous chemical reactions in the droplet. (2) Static droplet. (3) Anode-cathode separation was not described. |
2 | Numerical simulation by Chang et al. [ | (1) Two-dimensional transient finite element model of droplet on iron. (2) Contribution of migration; primary precipitates; local electroneutrality and homogeneous reaction. (3) Anodic and cathodic regions were not assumed prior. (4) Active-passive transition due to corrosion precipitates. (5) Simulated both at corrosion and at an applied potential. (6) Extended to simulate corrosion in the presence of CO2 instead of O2. | (1) Galvanic effects due to precipitates. (2) Alkaline cathodic region at the periphery and slightly acidic at the center. (3) Active-passive transition of anode due to of Fe(OH)3 precipitates, with active cathodic region. (4) With dissolved CO2 found that the species FeCO3 accumulated in the anodic reaction | (1) Static droplet. (2) Needs extension to include parameters like surface wettability and spatio-temporal variation of involved ionic species with 3D model. |
3 | Combination of empirical and numerical simulation by Cole et al. [ | (1) Multiscale model w.r.t. production, transport, and deposition of aerosols. (2) Dynamic droplet. (3) Spatio-temporal variations of involved ionic species. (4) Porous oxide layer. | (1) Oxygen concentration in the droplet as a function of droplet radius, cathodic reaction rate constant, diffusion of O2. (2) Porous oxide promotes sufficient alkalinity at the oxide-metal interface, promoting the formation of a compact oxide layer. | (1) Empirical models describing transport of aerosols doesn’t give a general understanding. (2) Droplet model needs extension to include surface energy and evolution of anode-cathode separation. (3) The porous oxide model needs extension to account for oxide layer evolution due to corrosion precipitates and pH variations within the droplet. |
No. | Approach | Features |
---|---|---|
1 | Atomistic approach | Accounts for: |
Adsorption of monomers. | ||
Surface diffusion of monomers. | ||
Agglomeration | ||
Cluster formation | ||
Droplet nucleation. | ||
Mostly uses: | ||
Random distribution functions to describe the nucleation sites. | ||
Monte-Carlo or molecular dynamics simulations. | ||
2 | Continuum approach | Accounts for: |
Instantaneous nucleation of droplets. | ||
Growth of droplets further in macroscopic scale. | ||
Mostly uses: | ||
Randomly distributed nucleation sites. | ||
Heat and mass transfer formulations. | ||
3 | Coupled approach | Combination of atomistic and continuum approaches. |
Table 3 Comparison of key differences between modelling approaches of formation and evolution of droplet.
No. | Approach | Features |
---|---|---|
1 | Atomistic approach | Accounts for: |
Adsorption of monomers. | ||
Surface diffusion of monomers. | ||
Agglomeration | ||
Cluster formation | ||
Droplet nucleation. | ||
Mostly uses: | ||
Random distribution functions to describe the nucleation sites. | ||
Monte-Carlo or molecular dynamics simulations. | ||
2 | Continuum approach | Accounts for: |
Instantaneous nucleation of droplets. | ||
Growth of droplets further in macroscopic scale. | ||
Mostly uses: | ||
Randomly distributed nucleation sites. | ||
Heat and mass transfer formulations. | ||
3 | Coupled approach | Combination of atomistic and continuum approaches. |
[1] | C. Leygraf, I.O. Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion, John Wiley & Sons, 2016. |
[2] |
C. Hansson, Metall. Mater. Trans. A 42 (2011) 2952-2962.
DOI URL |
[3] | G. Koch, Trends Oil Gas Corros. Res. Technol. (2017) 3-30. |
[4] |
B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma, npj Mater. Degrad. 1 (2017) 4.
DOI URL |
[5] | G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, 2016. |
[6] |
J. Dong, E. Han, W. Ke, Sci. Technol. Adv. Mater. 8 (2007) 559-565.
DOI URL |
[7] |
I.S. Cole, W. Ganther, J. Sinclair, D. Lau, D.A. Paterson, J. ElectroChem. Soc. 151 (2004) B627-B635.
DOI URL |
[8] |
I. Cole, N. Azmat, A. Kanta, M. Venkatraman, Int. Mater. Rev. 54 (2009) 117-133.
DOI URL |
[9] | J. Alcántara, D. de la Fuente, B. Chico, J. Simancas, I. Díaz, M. Morcillo, Materials 10 (2017) 406. |
[10] | Z.Y. Chen, The Role of Particles on Initial Atmospheric Corrosion of Copper and Zinc: Lateral Distribution, Secondary Spreading and CO2-/SO2-Influence, Ph.D. Thesis, KTH Royal Institute of Technology, 2005. |
[11] |
I.S. Cole, W. Ganther, Corros. Eng., Sci. Technol. 43 (2008) 156-162.
DOI URL |
[12] |
G. Tammann, W. Boehme, Ann. Phys. 414 (1935) 77-80.
DOI URL |
[13] |
J.L. McCormick, J.W. Westwater, Chem. Eng. Sci. 20 (1965) 1021-1036.
DOI URL |
[14] | A. Umur, P. Griffith, J. Heat Transfer 87 (1965) 275-282. |
[15] |
I. Cole, D. Paterson, Corros. Eng., Sci. Technol. 44 (2009) 332-339.
DOI URL |
[16] |
E. Schindelholz, B. Risteen, R. Kelly, J. ElectroChem. Soc. 161 (2014) C450-C459.
DOI URL |
[17] | S.B. Lyon, C.W. Wong, P. Ajiboye, An Approach to the modelling of atmospheric corrosion, in: Atmospheric Corrosion, ASTM International, 1995. |
[18] | J. Rose, Proc. Inst. Mech. Eng., Part A 216 (2002) 115-128. |
[19] |
I.S. Cole, D. Lau, D.A. Paterson, Corros. Eng., Sci. Technol. 39 (2004) 209-218.
DOI URL |
[20] |
N. Van den Steen, H. Simillion, O. Dolgikh, H. Terryn, J. Deconinck, Electrochim. Acta 187 (2016) 714-723.
DOI URL |
[21] |
X. Tang, C. Ma, X. Zhou, X. Lyu, Q. Li, Y. Li, ElectroChem. Commun. 101 (2019) 28-34.
DOI URL |
[22] |
Y. Wang, W. Wang, Y. Liu, L. Zhong, J. Wang, Corros. Sci. 53 (9) (2011) 2963-2968.
DOI URL |
[23] |
T. Tsuru, K.I. Tamiya, A. Nishikata, Electrochim. Acta 49 (2004) 2709-2715.
DOI URL |
[24] |
S. Li, L. Hihara, J. ElectroChem. Soc. 159 (2012) C461-C468.
DOI URL |
[25] |
B. Risteen, E. Schindelholz, R. Kelly, J. ElectroChem. Soc. 161 (2014) C580-C586.
DOI URL |
[26] | V. Kucera, E. Mattsson, Corros. Mech. 28 (1987) 211-284. |
[27] |
J. Wisniewski, Water Air Soil Pollut. 17 (1982) 361-377.
DOI URL |
[28] | P.A. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, CRC Press, 2006. |
[29] | P.A. Schweitzer, Atmospheric Degradation and Corrosion Control, CRC Press, 1999. |
[30] | R. Baboian, Synergistic effects of acid deposition and road salts on corrosion, in: Corrosion Forms and Control for Infrastructure, ASTM International, 1992. |
[31] |
F. Corvo, T. Pérez, Y. Martin, J. Reyes, L. Dzib, J. González-Sánchez, A. Casta˜neda, Corros. Sci. 50 (2008) 206-219.
DOI URL |
[32] |
E. Schindelholz, R.G. Kelly, Corros. Rev. 30 (2012) 135-170.
DOI URL |
[33] | C.M. Hangarter, S.A. Policastro, Corrosion 73 (2016) 268-280. |
[34] | C. Brett, A.M.O. Brett, Brett, Electrochemistry: Principles, Methods, and Applications, Oxford University Press, Oxford, 1993. |
[35] |
I. Cole, D.A. Paterson, Corros. Eng., Sci. Technol. 41 (2006) 67-76.
DOI URL |
[36] |
U.R. Evans, Ind. Eng. Chem. 17 (1925) 363-372.
DOI URL |
[37] |
J. Weissenrieder, C. Leygraf, J. ElectroChem. Soc. 151 (2004) B165-B171.
DOI URL |
[38] |
Y. Wang, W. Wang, Y. Liu, L. Zhong, J. Wang, Corros. Sci. 53 (2011) 2963-2968.
DOI URL |
[39] |
Z. Liu, W. Wang, J. Wang, X. Peng, Y. Wang, P. Zhang, H. Wang, C. Gao, Corros. Sci. 80 (2014) 523-527.
DOI URL |
[40] |
T. Muster, A. Bradbury, A. Trinchi, I. Cole, T. Markley, D. Lau, S. Dligatch, A. Bendavid, P. Martin, Electrochim. Acta 56 (2011) 1866-1873.
DOI URL |
[41] | N. LeBozec, D. Thierry, A. Peltola, L. Luxem, G. Luckeneder, G. Marchiaro, M. Rohwerder, Mater. Corros. 64 (2013) 969-978. |
[42] |
N. LeBozec, N. Blandin, D. Thierry, Mater. Corros. 59 (2008) 889-894.
DOI URL |
[43] | J.H. Ahn, Y.S. Jeong, I.T. Kim, S.H. Jeon, C.H. Park, Sensors 19 (2019) 1416. |
[44] |
S. Xu, H. Zhang, Y. Wang, Corros. Eng., Sci. Technol. 54 (2019) 431-443.
DOI URL |
[45] | D. Thierry, D. Persson, G. Luckeneder, K.H. Stellnberger, Corros. Sci. 148 (2019) 431-443. |
[46] | Y. Zhi, D. Fu, D. Zhang, T. Yang, X. Li, Metals 9 (2019) 383. |
[47] |
I.S. Cole, Corros. Rev. 20 (2002) 317-338.
DOI URL |
[48] |
P. Roberge, R. Klassen, P. Haberecht, Mater. Des. 23 (2002) 321-330.
DOI URL |
[49] |
J. Jiang, J. Wang, Yh. Lu, J.Z. Hu, Electrochim. Acta 54 (2009) 1426-1435.
DOI URL |
[50] |
I.S. Cole, T. Muster, N. Azmat, M. Venkatraman, A. Cook, Electrochim. Acta 56 (2011) 1856-1865.
DOI URL |
[51] |
H. Simillion, N. Van den Steen, H. Terryn, J. Deconinck, Electrochim. Acta 209 (2016) 149-158.
DOI URL |
[52] | K.Y. Law, H. Zhao, Surface Wetting: Characterization, Contact Angle, and Fundamentals, Springer, Switzerland, 2016. |
[53] |
I.S. Cole, D. Lau, D.A. Paterson, Corros. Eng., Sci. Technol. 39 (2004) 209-218.
DOI URL |
[54] | L.R. Glicksman, A.W. Hunt, Int. J. Heat Mass Transfer 15 (1972) 2251-2269. |
[55] |
K.R. Jensen, P. Fojan, R.L. Jensen, L. Gurevich, J. Nanosci. Nanotechnol. 14 (2014) 1859-1871.
DOI URL PMID |
[56] |
M. Singh, N.D. Pawar, S. Kondaraju, S.S. Bahga, J. Indian Inst. Sci. 99 (2019) 157-171.
DOI URL |
[57] | R. Parin, A. Penazzato, S. Bortolin, D. Del Col, Modelling of dropwise condensation on flat surfaces, in: Proceeding to the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Slovenia, July, 2017, pp. 17-19. |
[58] | Y.T. Wu, C.X. Yang, X.G. Yuan, Int. J. Heat Mass Transfer 44 (2001) 4455-4464. |
[59] | X. Liu, P. Cheng, Int. J. Heat Mass Transfer 83 (2015) 833-841. |
[60] | X. Liu, P. Cheng, Int. J. Heat Mass Transfer 83 (2015) 842-849. |
[61] |
B.S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar, K. Muralidhar, Heat Transfer Eng. 33 (2012) 301-341.
DOI URL |
[62] |
P. Meakin, Phys. Scr. T44 (1992) 31-41.
DOI URL |
[63] | S. Vemuri, K. Kim, Int. J. Heat Mass Transfer 49 (2006) 649-657. |
[64] | E. Le Fevre, J. Rose, Int. J. Heat Mass Transfer 8 (1965) 1117-1133. |
[65] | R. Leach, F. Stevens, S. Langford, J. Dickinson, Langmuir 22 (2006) 8864-8872. |
[66] | B.S. Sikarwar, N.K. Battoo, S. Khandekar, K. Muralidhar, J. Heat Transfer 133 (2011), 021501. |
[67] |
R. Enright, N. Miljkovic, J.L. Alvarado, K. Kim, J.W. Rose, Nanoscale Microscale ThermoPhys. Eng. 18 (2014) 223-250.
DOI URL |
[68] |
H.J. Cho, D.J. Preston, Y. Zhu, E.N. Wang, Nat. Rev. Mater. 2 (2017) 16092.
DOI URL |
[69] |
R. Wen, X. Ma, Y.C. Lee, R. Yang, Joule 2 (2018) 2307-2347.
DOI URL |
[70] |
T.Q. Liu, W. Sun, C.F. Mu, S.B. Xia, X.Y. Sun, Heat Transfer-Asian Res. 42 (2013) 151-162.
DOI URL |
[71] |
D. Gunasegaram, M. Venkatraman, I. Cole, Int. Mater. Rev. 59 (2014) 84-114.
DOI URL |
[72] | U.R. Evans, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications, ACS Publications, 1960. |
[73] | E. McCafferty, Introduction to Corrosion Science, Springer, New York, 2010. |
[74] |
C. Chen, F. Mansfeld, Corros. Sci. 39 (1997) 409-413.
DOI URL |
[75] |
W.J. Moore, Physical Chemistry, Longman, New York, 1972.
DOI URL PMID |
[76] | G. El-Mahdy, H.A. Al-Lohedan, Z. Issa, Int. J. ElectroChem. Sci. 9 (2014) 7977-7985. |
[77] |
T. Tsuru, A. Nishikata, J. Wang, Mater. Sci. Eng. A 198 (1995) 161-168.
DOI URL |
[78] |
D. Beysens, C. R. Phys. 7 (2006) 1082-1100.
DOI URL |
[79] |
S.B. Barati, N. Pionnier, J.C. Pinoli, S. Valette, Y. Gavet, Int. J. Therm. Sci. 124 (2018) 356-365.
DOI URL |
[80] | W. Xu, Z. Lan, Q. Liu, B. Du, X. Ma, Int. J. Heat Mass Transfer 127 (2018) 44-54. |
[81] | M.S. Venkatraman, I.S. Cole, D.R. Gunasegaram, B. Emmanuel, Mater. Sci. Forum 654-656 (2010) 1650-1653. |
[82] | J.S. Newman, New Jersey, 1991. |
[83] | C. Marangoni, Sull’espansione delle goccie d’un liquido galleggianti sulla superfice di altro liquido, Fusi: Pavia, Italy, 1865. |
[84] |
E. Dietrich, S. Wildeman, C.W. Visser, K. Hofhuis, E.S. Kooij, H.J. Zandvliet, D. Lohse, J. Fluid Mech. 794 (2016) 45-67.
DOI URL |
[85] | S. Somasundaram, T. Anand, S. Bakshi, Phys. Fluids 27 (11) (2015), 112105. |
[86] |
Y.C. Chang, R. Woollam, M.E. Orazem, J. ElectroChem. Soc. 161 (2014) C321-C329.
DOI URL |
[87] | Y.C. Chang, Mathematical Models for Under-deposit Corrosion in Aerated and De-aerated Solutions, Ph.D. Thesis, University of Florida, 2013. |
[88] |
S. Li, L. Hihara, Corros. Sci. 108 (2016) 200-204.
DOI URL |
[89] | I. Cole, Materials 10 (2017) 1288. |
[90] |
D. Sherwood, M.V. Reddy, I. Cole, B. Emmanuel, J. Electroanal. Chem. 725 (2014) 1-6.
DOI URL |
[91] | D. Sherwood, B. Emmanuel, I. Cole, J. ElectroChem. Soc. 163 (2016) 3534-3541. |
[92] |
I. Cole, T. Muster, D. Lau, N. Wright, N.S. Azmat, J. ElectroChem. Soc. 157 (2010) C213-C222.
DOI URL |
[93] |
N. Azmat, K. Ralston, B. Muddle, I. Cole, Corros. Sci. 53 (2011) 3534-3541.
DOI URL |
[94] |
I.S. Cole, R. Holgate, P. Kao, W. Ganther, Corros. Sci. 37 (1995) 455-465.
DOI URL |
[95] |
S. Shevkunov, J.K. Singh, J. Mol. Liq. 264 (2018) 150-164.
DOI URL |
[96] |
K.K. Varanasi, M. Hsu, N. Bhate, W. Yang, T. Deng, Appl. Phys. Lett. 95 (2009), 094101.
DOI URL |
[97] | P. Bentley, B. Hands, Proc. R. Soc. London, Ser. A 359 (1978) 319-343. |
[98] |
L.H. Chen, C.Y. Chen, Y.L. Lee, Surf. Sci. 429 (1999) 150-160.
DOI URL |
[99] |
R. Becker, W. Döring, Ann. Phys. 416 (1935) 719-752.
DOI URL |
[100] | Y.I. Frenkel, Kinetic Theory of Liquids, Dover Publication, Inc, New York, 1955. |
[101] | R. Sigsbee, A. Zettlemoyer, Nucleation, Marcel Dekker, Inc, New York, 1969. |
[102] |
X.C. Zeng, J. Chem. Phys. 104 (1996) 2699-2704.
DOI URL |
[103] |
M. Qian, J. Ma, J. Chem. Phys. 130 (2009), 214709.
DOI URL PMID |
[104] | M. Qian, J. Ma, J. Cryst. Growth 355 (2012) 73-77. |
[105] |
J. Merikanto, E. Zapadinsky, A. Lauri, H. Vehkamäki, Phys. Rev. Lett. 98 (2007) 145702.
DOI URL PMID |
[106] |
X.M. Bai, M. Li, J. Chem. Phys. 122 (2005), 224510.
DOI URL PMID |
[107] | S. Toxvaerd, J. Chem. Phys. 119 (2003) 10764-10770. |
[108] |
D. Niu, G. Tang, Sci. Rep. 6 (2016) 19192.
DOI URL PMID |
[109] |
K. Oh, X.C. Zeng, J. Chem. Phys. 110 (1999) 4471-4476.
DOI URL |
[110] | X. Wang, Y. Tian, X. Peng, Prog. Nat. Sci. 13 (2003) 451-456. |
[111] |
W. Xu, Z. Lan, B. Peng, R. Wen, X. Ma, RSC Adv. 4 (2014) 31692-31699.
DOI URL |
[112] |
H. Brune, Surf. Sci. Rep. 31 (1998) 125-229.
DOI URL |
[113] | J. Venables, Introduction to Surface and Thin Film Processes, Cambridge University Press, 2000. |
[114] | K. Oura, V. Lifshits, A. Saranin, A. Zotov, M. Katayama, Surface Science: an Introduction, Springer-Verlag, Berlin Heidelberg, 2003. |
[115] |
J. Merikanto, H. Vehkamäki, E. Zapadinsky, J. Chem. Phys. 121 (2004) 914-924.
DOI URL PMID |
[116] |
G. Croce, E. de Candido, P. D’Agaro, Appl. Therm. Eng. 29 (2009) 1366-1374.
DOI URL |
[117] | D. Sun, J. Xu, Q. Chen, Numer. Heat Transfer, Part B 66 (2014) 326-342. |
[118] | S. Zheng, F. Eimann, C. Philipp, T. Fieback, U. Gross, Int. J. Heat Mass Transfer 120 (2018) 879-894. |
[119] | L.R. Glicksman, Int. J. Heat Mass Transfer 15 (1972) 2251-2269. |
[120] | C. Graham, The Limiting Heat Transfer Mechanisms of Dropwise Condensation, Ph.D. Thesis, Massachusetts Institute of Technology, 1969. |
[121] | E.E. Gose, A. Mucciardi, E. Baer, Int. J. Heat Mass Transfer 10 (1967) 15-22. |
[122] | H. Tanaka, J. Heat Transfer 97 (1975) 72-78. |
[123] | S. Kim, K.J. Kim, J. Heat Transfer 133 (2011), 081502. |
[124] | B. Qi, J. Wei, L. Zhang, H. Xu, Int. J. Heat Mass Transfer 83 (2015) 259-272. |
[125] | S. Khandekar, K. Muralidhar, Dropwise Condensation on Inclined Textured Surfaces, Springer, New York, 2014. |
[126] |
M.H. Mamme, C. Köhn, J. Deconinck, J. Ustarroz, Nanoscale 10 (2018) 7194-7209.
DOI URL PMID |
[127] |
E. Dubuisson, P. Lavie, F. Dalard, J.P. Caire, S. Szunerits, ElectroChem. Commun. 8 (2006) 911-915.
DOI URL |
[128] | G. El-Mahdy, A.K. Dyab, H.A. Al-Lohedan, Int. J. ElectroChem. Sci. 8 (2013) 5232-5240. |
[129] |
I. Cole, W. Ganther, D.A. Paterson, A. Bradbury, Corros. Eng., Sci. Technol. 40 (2005) 328-336.
DOI URL |
[130] |
R. Picknett, R. Bexon, J. Colloid Interface Sci. 61 (2) (1977) 336-350.
DOI URL |
[131] |
K. Birdi, D. Vu, A. Winter, J. Phys. Chem. 93 (1989) 3702-3703.
DOI URL |
[132] | K. Birdi, D. Vu, J. Adhes, Sci. Technol. 7 (1993) 485-493. |
[133] |
H. Hu, R.G. Larson, J. Phys. Chem. B 106 (2002) 1334-1344.
DOI URL |
[134] | H.Y. Erbil, G. McHale, M. Newton, Langmuir 18 (2002) 2636-2641. |
[135] | C. Bourges-Monnier, M. Shanahan, Langmuir 11 (1995) 2820-2829. |
[136] |
M. Shanahan, C. Bourges, Int. J. Adhes. Adhes. 14 (1994) 201-205.
DOI URL |
[137] |
S. Nêsić, J. Vodnik, Chem. Eng. Sci. 46 (1991) 527-537.
DOI URL |
[138] | Z. Pan, J.A. Weibel, S.V. Garimella, Langmuir 30 (2014) 9726-9730. |
[139] | M. Sadafi, I. Jahn, A. Stilgoe, K. Hooman, Int. J. Heat Mass Transfer 81 (2015) 1-9. |
[140] |
C. Diddens, J.G. Kuerten, C. Van der Geld, H. Wijshoff, J. Colloid Interface Sci. 487 (2017) 426-436.
DOI URL PMID |
[141] | C. Doursat, L. Lecoq, O. Laguerre, D. Flick, Int. J. Heat Mass Transfer 113 (2017) 1234-1245. |
[142] |
R.G. Larson, AIChE J. 60 (2014) 1538-1571.
DOI URL |
[143] |
S. Semenov, A. Trybala, R.G. Rubio, N. Kovalchuk, V. Starov, M.G. Velarde, Adv. Colloid Interface Sci. 206 (2014) 382-398.
DOI URL PMID |
[144] |
J.M. Stauber, S.K. Wilson, B.R. Duffy, K. Sefiane, J. Fluid Mech. 744 (2014) R2.
DOI URL |
[145] | K. Yang, F. Hong, P. Cheng, Int. J. Heat Mass Transfer 70 (2014) 409-420. |
[146] |
D. Tam, V. von Arnim, G. McKinley, A. Hosoi, J. Fluid Mech. 624 (2009) 101-123.
DOI URL |
[147] | H. Hu, R.G. Larson, Langmuir 21 (2005) 3972-3980. |
[148] | S. Semenov, V.M. Starov, R.G. Rubio, M.G. Velarde, Langmuir 28 (2012) 15203-15211. |
[149] | O.E. Ruiz, W.Z. Black, J. Heat Transfer 124 (2002) 854-863. |
[150] | F. Girard, M. Antoni, S. Faure, A. Steinchen, Langmuir 22 (2006) 11085-11091. |
[151] | K. Gleason, H. Voota, S.A. Putnam, Int. J. Heat Mass Transfer 101 (2016) 418-426. |
[152] | Y. Chen, W. Hu, J. Wang, F. Hong, P. Cheng, Int. J. Heat Mass Transfer 108 (2017) 2072-2087. |
[153] | M.A. Kadhim, N. Kapur, J. Summers, H. Thompson, Langmuir 35 (2019) 6256-6266. |
[154] | Q. Guo, P. Cheng, Int. J. Heat Mass Transfer 134 (2019) 828-841. |
[155] | C. Bouchenna, M.A. Saada, S. Chikh, L. Tadrist, Interfacial Phenom. Heat Transfer 3 (2015) 185-201. |
[156] |
S. Aksoyoglu, U. Baltensperger, A.S. Prévôt, Atmos. Chem. Phys. 16 (2016) 1895-1906.
DOI URL |
[157] |
G. Meira, W. Pinto, E. Lima, C. Andrade, Constr. Build. Mater. 135 (2017) 287-296.
DOI URL |
[158] | Y.C. Chang, M.E. Orazem, ECS Trans. 50 [1] C. Leygraf, I.O. Wallinder, J. Tidblad, T. Graedel, Atmospheric Corrosion, John Wiley & Sons, 2016. |
[1] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[2] | Mei-Jun Liu, Guan-Jun Yang. Condensation behavior of gaseous phase during transported in the near-substrate boundary layer of plasma spray-physical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 67(0): 127-134. |
[3] | Yue Wang, Xin Mu, Junhua Dong, Aniefiok Joseph Umoh, Wei Ke. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76(0): 41-50. |
[4] | Zibo Pei, Xuequn Cheng, Xiaojia Yang, Qing Li, Chenhan Xia, Dawei Zhang, Xiaogang Li. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64(0): 214-221. |
[5] | Rajendra Kurapati, Vincent Maurice, Antoine Seyeux, Lorena H. Klein, Dimitri Mercier, Grégory Chauveau, Catherine Grèzes-Besset, Loïc Berthod, Philippe Marcus. Advanced protection against environmental degradation of silver mirror stacks for space application [J]. J. Mater. Sci. Technol., 2021, 64(0): 1-9. |
[6] | Chuang Qiao, Mingna Wang, Long Hao, Xiahe Liu, Xiaolin Jiang, Xizhong An, Duanyang Li. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2021, 75(0): 252-264. |
[7] | Yuanjie Zhi, Tao Yang, Dongmei Fu. An improved deep forest model for forecast the outdoor atmospheric corrosion rate of low-alloy steels [J]. J. Mater. Sci. Technol., 2020, 49(0): 202-210. |
[8] | Xiao Lu, Yuwei Liu, Miaoran Liu, Zhenyao Wang. Corrosion behavior of copper T2 and brass H62 in simulated Nansha marine atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(9): 1831-1839. |
[9] | Hongguang Liu, Fuyong Cao, Guang-Ling Song, Dajiang Zheng, Zhiming Shi, Mathew S. Dargusch, Andrej Atrens. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35(9): 2003-2016. |
[10] | Bo Liu, Xin Mu, Ying Yang, Long Hao, Xueyong Ding, Junhua Dong, Zhe Zhang, Huaxing Hou, Wei Ke. Effect of tin addition on corrosion behavior of a low-alloy steel in simulated costal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(7): 1228-1239. |
[11] | Min Cao, Li Liu, Zhongfen Yu, Lei Fan, Ying Li, Fuhui Wang. Electrochemical corrosion behavior of 2A02 Al alloy under an accelerated simulation marine atmospheric environment [J]. J. Mater. Sci. Technol., 2019, 35(4): 651-659. |
[12] | Chuang Qiao, Lianfeng Shen, Long Hao, Xin Mu, Junhua Dong, Wei Ke, Jing Liu, Bo Liu. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35(10): 2345-2356. |
[13] | Xingfu Wang, Xinfu Wang, Dan Wang, Modi Zhao, Fusheng Han. A novel approach to fabricate Zn coating on Mg foam through a modified thermal evaporation technique [J]. J. Mater. Sci. Technol., 2018, 34(9): 1558-1563. |
[14] | Haigang Xiao, Wei Ye, Xiaoping Song, Yuantai Ma, Ying Li. Formation process of akaganeite in the simulated wet-dry cycles atmospheric environment [J]. J. Mater. Sci. Technol., 2018, 34(8): 1387-1396. |
[15] | Shin-Ichiro Fujita, Shinji Segawa, Kazuki Kawashima, Xuejing Nie, Tomoki Erata, Masahiko Arai. One-Pot Room-Temperature Synthesis of Mg Containing MCM-41 Mesoporous Silica for Aldol Reactions [J]. J. Mater. Sci. Technol., 2018, 34(12): 2521-2528. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||