J. Mater. Sci. Technol. ›› 2021, Vol. 61: 159-168.DOI: 10.1016/j.jmst.2020.06.016
• Research Article • Previous Articles Next Articles
Qiaoyue Zhanga, Shun-Xing Lianga,b,*(), Zhe Jiac, Wenchang Zhangd, Weimin Wange,**(
), Lai-Chang Zhanga,*(
)
Received:
2020-05-21
Revised:
2020-06-04
Accepted:
2020-06-15
Published:
2021-01-20
Online:
2021-01-20
Contact:
Shun-Xing Liang,Weimin Wang,Lai-Chang Zhang
Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons[J]. J. Mater. Sci. Technol., 2021, 61: 159-168.
Fig. 3. (a) Potentiodynamic polarization curves and (b) electrochemical impedance spectroscopy of as-annealed FeSiB-A520, FeSiB-A560 and FeSiB-A600 ribbons.
Fig. 4. BR3B-A dye decolorization by electrochemical-etched (a) FeSiB-A520, (b) FeSiB-A560 and (c) FeSiB-A600 varying from 0 s to 720 s in 0.3 M H3PO4 solution. Quenching effect by 0.01 - 1.0 M TBA on 180s-etched (d) FeSiB-A520, (e) FeSiB-A560 and (f) FeSiB-A600.
Fig. 5. UV-vis spectra of BR3B-A dye decolorization by: (a) as-annealed and (b) 180s-etched FeSiB-A520; (c) as-annealed and (d) 180s-etched FeSiB-A560; (e) as-annealed and (f) 180s-etched FeSiB-A600.
Fig. 7. Surface morphologies of FeSiB-A520 electrochemically etched at (a) 90, (b) 180 s and (c) 720 s before BR3B-A dye degradation, which are correspondingly denoted as: xxx (etching time) - Be. (d) (e) (f) surface morphologies of (a) (b) (c) after dye degradation, which are correspondingly denoted as: xxx (etching time) - Af.
Fig. 8. (a) Reusability of FeSiB-A520 and (b) corresponding decolorization rate after stabilization. (c) and (d) Surface morphologies of 9th-reused FeSiB-A520 ribbons.
Fig. 9. Reaction rate constants kobs of partially crystallized ribbons (FeSiB-A520, FeSiB-A560 and FeSiB-A600) 180s-etched in (a) 0.05 - 1.0 M H3PO4 solution, (b) HNO3, H3PO4, H2SO4 and HCl solution (with equivalent H+) and (c) NaNO3, Na3PO4, Na2SO4 and NaCl solution (with equivalent anion at pH 6.0).
Fig. 10. Surface morphologies of 180s-etched FeSiB-A520 in (a) (b) 0.9 M HCl, (c) (d) 0.5 M H2SO4 and (e) (f) 0.9 M HNO3 solution before and after dye degradation. Surface morphologies before and after dye degradation are denoted as: xxx (acid) - Be and xxx (acid) - Af, respectively.
Fig. 11. Surface morphologies of 180s-etched FeSiB-A520 in (a) NaCl, (b) Na3PO4, (c) Na2SO4 and (d) NaNO3 solution at pH 6.0. The concentrations of all electrolytes are 0.3 M.
[1] |
L.C. Zhang, Z. Jia, F. Lyu, S.X. Liang, J. Lu, Prog. Mater. Sci. 105 (2019), 100576.
DOI URL |
[2] |
J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao, Y. Yang, Prog. Mater. Sci. 104 (2019) 250-329.
DOI URL |
[3] |
L.C. Zhang, J. Xu, J. Non-Cryst. Solids 347 (2004) 166-172.
DOI URL |
[4] |
J.L. Gu, Y. Shao, H.T. Bu, J.L. Jia, K.F. Yao, Corros. Sci. 165 (2020) 108392.
DOI URL |
[5] |
M.Z. Ma, R.P. Liu, Y. Xiao, D.C. Lou, L. Liu, Q. Wang, W.K. Wang, Mater. Sci. Eng. A 386 (2004) 326-330.
DOI URL |
[6] |
A. Makino, T. Kubota, C. Chang, M. Makabe, A. Inoue, J. Magn. Magn. Mater. 320 (2008) 2499-2503.
DOI URL |
[7] |
J. Ma, X.Y. Zhang, D.P. Wang, D.Q. Zhao, D.W. Ding, K. Liu, W.H. Wang, Appl. Phys. Lett. 104 (2014) 173701.
DOI URL |
[8] |
L.C. Zhang, S.X. Liang, Chem. Asian J. 13 (2018) 3575-3592.
DOI URL PMID |
[9] |
Y.C. Hu, C. Sun, C. Sun, ChemCatChem 11 (2019) 2401-2414.
DOI URL |
[10] |
J.Q. Wang, Y.H. Liu, M.W. Chen, G.Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater. 22 (2012) 2567-2570.
DOI URL |
[11] |
S.X. Liang, Z. Jia, W.C. Zhang, X.F. Li, W.M. Wang, H.C. Lin, L.C. Zhang, Appl. Catal. B Environ. 221 (2018) 108-118.
DOI URL |
[12] |
Q.Q. Wang, M.X. Chen, L.L. Shao, Y.W. Ge, P.H. Lin, C.L. Chu, B.L. Shen, J. Non-Cryst. Solids 525 (2019), 119671.
DOI URL |
[13] |
S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, L.C. Zhang, Mater. Des. 119 (2017) 244-253.
DOI URL |
[14] |
P. Wang, J.Q. Wang, H. Li, H. Yang, J. Huo, J. Wang, C. Chang, X. Wang, R.W. Li, G. Wang, J. Alloys Compd. 701 (2017) 759-767.
DOI URL |
[15] | S.X. Liang, W. Zhang, L. Zhang, W. Wang, L.C. Zhang, Sustain. Mater. Technol. 22 (2019) e00126. |
[16] |
C. Zhang, X. Zhang, S. Zhang, H. Guo, Results Phys. 14 (2019) 102523.
DOI URL |
[17] |
Y.C. Hu, Y.Z. Wang, R. Su, C.R. Cao, F. Li, C.W. Sun, Y. Yang, P.F. Guan, D.W. Ding, Z.L. Wang, W.H. Wang, Adv. Mater. 28 (2016) 10293-10297.
DOI URL PMID |
[18] |
S. Ju, J. Feng, P. Zou, W. Xu, S. Wang, W. Gao, H.J. Qiu, J. Huo, J.Q. Wang, J. Mater. Chem. A 8 (2020) 3246-3251.
DOI URL |
[19] |
Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li, J. Luan, F. Lyu, L.C. Zhang, J.J. Kruzic, J.J. Kai, J.C. Huang, J. Lu, C.T. Liu, Adv. Mater. 32 (2020), 2000385.
DOI URL |
[20] |
M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, A.D. Taylor, ACS Nano 5 (2011) 2979-2983.
URL PMID |
[21] |
R.C. Sekol, M. Carmo, G. Kumar, F. Gittleson, G. Doubek, K. Sun, J. Schroers, A.D. Taylor, Int. J. Hydrogen Energy 38 (2013) 11248-11255.
DOI URL |
[22] |
C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. Int. Ed. 57 (2018) 6073-6076.
DOI URL |
[23] |
J.M.V. Nsanzimana, Y. Peng, Y.Y. Xu, L. Thia, C. Wang, B.Y. Xia, X. Wang, Adv. Energy Mater. 8 (2018), 1701475.
DOI URL |
[24] |
N. Yang, H. Cheng, X. Liu, Q. Yun, Y. Chen, B. Li, B. Chen, Z. Zhang, X. Chen, Q. Lu, J. Huang, Y. Huang, Y. Zong, Y. Yang, L. Gu, H. Zhang, Adv. Mater. 30 (2018), 1803234.
DOI URL |
[25] |
L. Zhang, L.Y. Chen, Adv. Eng. Mater. 21 (2019), 1801215.
DOI URL |
[26] |
L.J. Song, M. Gao, W. Xu, J.T. Huo, J.Q. Wang, R.W. Li, W.H. Wang, J.H. Perepezko, Acta Mater. 185 (2020) 38-44.
DOI URL |
[27] |
J.Q. Wang, Y. Shen, J.H. Perepezko, M.D. Ediger, Acta Mater. 104 (2016) 25-32.
DOI URL |
[28] |
L.C. Zhang, J. Xu, J. Eckert, J. Appl. Phys. 100 (2006), 033514.
DOI URL |
[29] |
S.Q. Chen, Y. Shao, M.T. Cheng, K.F. Yao, J. Non-Cryst. Solids 473 (2017) 74-78.
DOI URL |
[30] |
S. Xie, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, Sci. Rep. 6 (2016), 21947.
URL PMID |
[31] |
Z. Jia, X. Duan, P. Qin, W. Zhang, W. Wang, C. Yang, H. Sun, S. Wang, L.C. Zhang, Adv. Funct. Mater. 27 (2017), 1702258.
DOI URL |
[32] |
P.P. Wang, J.Q. Wang, J.T. Huo, W. Xu, X.M. Wang, G. Wang, Sci. China-Phys. Mech. Astron. 60 (2017), 076112.
DOI URL |
[33] |
S.Q. Chen, G.N. Yang, S.T. Luo, S.J. Yin, J.L. Jia, Z. Li, S.H. Gao, Y. Shao, K.F. Yao, J. Mater. Chem. A 5 (2017) 14230-14240.
DOI URL |
[34] |
S.X. Liang, Z. Jia, Y.J. Liu, W. Zhang, W. Wang, J. Lu, L.C. Zhang, Adv. Mater. 30 (2018), 1802764.
DOI URL |
[35] |
S.K. Sharma, S. Hofmann, Appl. Surf. Sci. 51 (1991) 139-155.
DOI URL |
[36] |
Z. Jia, Q. Wang, L. Sun, Q. Wang, L.C. Zhang, G. Wu, J.H. Luan, Z.B. Jiao, A. Wang, S.X. Liang, M. Gu, J. Lu, Adv. Funct. Mater. 29 (2019), 1807857.
DOI URL |
[37] |
Q.Q. Wang, M.X. Chen, P.H. Lin, Z.Q. Cui, C.L. Chu, B.L. Shen, J. Mater. Chem. A 6 (2018) 10686-10699.
DOI URL |
[38] |
C. Zhang, Q. Sun, J. Non-Cryst. Solids 470 (2017) 93-98.
DOI URL |
[39] |
Q.Q. Wang, L. Yun, M.X. Chen, D.D. Xu, Z.Q. Cui, Q.S. Zeng, P.H. Lin, C.L. Chu, B.L. Shen, ACS Appl. Nano Mater. 2 (2019) 214-227.
DOI URL |
[40] |
L.C. Zhang, J. Xu, E. Ma, Mater. Sci. Eng. A 434 (2006) 280-288.
DOI URL |
[41] |
L.C. Zhang, J. Xu, E. Ma, J. Mater. Res. 17 (2002) 1743-1749.
DOI URL |
[42] |
Z. Jia, S.X. Liang, W.C. Zhang, W.M. Wang, C. Yang, L. Zhang, J. Taiwan Inst. Chem. Eng. 71 (2017) 128-136.
DOI URL |
[43] |
A.H. Mady, M.L. Baynosa, D. Tuma, J.J. Shim, Appl. Catal. B 244 (2019) 946-956.
DOI URL |
[44] |
L. Zhang, L.Y. Chen, L. Wang, Adv. Eng. Mater. 22 (2020), 1901258.
DOI URL |
[45] |
J.L. Jiang, Z. Jia, Q. He, Q. Wang, F. Lyu, L.C. Zhang, S.X. Liang, J.J. Kruzic, J. Lu, J. Alloys Compd. 822 (2020), 153574.
DOI URL |
[46] |
J.C. Wang, Z. Jia, S.X. Liang, P. Qin, W.C. Zhang, W.M. Wang, T.B. Sercombe, L. Zhang, Mater. Des. 140 (2018) 73-84.
DOI URL |
[47] |
Z. Jia, J.C. Wang, S.X. Liang, W.C. Zhang, W.M. Wang, L. Zhang, J. Alloys Compd. 728 (2017) 525-533.
DOI URL |
[48] | S.X. Liang, X. Wang, W. Zhang, Y.J. Liu, W. Wang, L.C. Zhang, Appl. Mater. Today 19 (2020), 100543. |
[49] |
L. Hou, Q.Q. Wang, X.D. Fan, F. Miao, W.M. Yang, B.L. Shen, New J. Chem. 43 (2019) 6126-6135.
DOI URL |
[50] |
Z. Jia, W.C. Zhang, W.M. Wang, D. Habibi, L.C. Zhang, Appl. Catal. B Environ. 192 (2016) 46-56.
DOI URL |
[51] |
Z. Jia, L.B.T. La, W.C. Zhang, S.X. Liang, B. Jiang, S.K. Xie, D. Habibi, L. Zhang, J. Mater. Sci. Technol. 33 (2017) 856-863.
DOI URL |
[52] |
X. Wang, Q. Zhang, S.X. Liang, Z. Jia, W. Zhang, W. Wang, L.C. Zhang, Catalysts 10 (2020) 48.
DOI URL |
[53] |
Z. Jia, F. Lyu, L. Zhang, S. Zeng, S.X. Liang, Y.Y. Li, J. Lu, Sci. Rep. 9 (2019) 7636.
URL PMID |
[54] |
W.M. Yang, Q.Q. Wang, W.Y. Li, L. Xue, H.S. Liu, J. Zhou, J.Y. Mo, B.L. Shen, Mater. Des. 161 (2019) 136-146.
DOI URL |
[55] |
X.F. Li, S.X. Liang, X.W. Xi, Z. Jia, S.K. Xie, H.C. Lin, J.P. Hu, L. Zhang, Metals 7 (2017) 273.
DOI URL |
[56] |
Y. Jin, R. Li, H. Xu, X.B. Chen, T. Zhang, Scr. Mater. 133 (2017) 14-18.
DOI URL |
[57] |
S. Xie, Y. Xie, J.J. Kruzic, K. Gu, H. Yang, Y. Deng, X. Zeng, ChemCatChem 12 (2020) 750-761.
DOI URL |
[58] |
S.Q. Chen, K.Z. Hui, L.Z. Dong, Z. Li, Qh. Zhang, L. Gu, W. Zhao, S. Lan, Y. Ke, Y. Shao, H. Hahn, K.F. Yao, Sci. China Mater. 63 (2020) 453-466.
DOI URL |
[59] |
Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Appl. Catal. B Environ. 204 (2017) 537-547.
DOI URL |
[60] |
Q. Chen, Z. Yan, L. Guo, H. Zhang, L. Zhang, K. Kim, X. Li, W. Wang, J. Alloys Compd. 831 (2020), 154817.
DOI URL |
[61] |
F. Miao, Q.Q. Wang, Q. Zeng, L. Hou, T. Liang, Z. Cui, B.L. Shen, J. Mater. Sci. Technol. 38 (2020) 107-118.
DOI URL |
[62] |
J.C. Wang, S.X. Liang, Z. Jia, W.C. Zhang, W.M. Wang, Y.J. Liu, J. Lu, L. Zhang, J. Alloys Compd. 785 (2019) 642-650.
DOI URL |
[63] |
S.X. Liang, W. Zhang, W. Wang, G. Jia, W. Yang, L.C. Zhang, J. Phys. Chem. Solids 132 (2019) 89-98.
DOI URL |
[64] |
F. Hu, S. Zhu, S. Chen, Y. Li, L. Ma, T. Wu, Y. Zhang, C. Wang, C. Liu, X. Yang, L. Song, X. Yang, Y. Xiong, Adv. Mater. 29 (2017), 1606570.
DOI URL |
[65] |
F. Miao, Q.Q. Wang, S. Di, L. Yun, J. Zhou, B.L. Shen, J. Mater. Sci. Technol. 53 (2020) 163-173.
DOI URL |
[66] |
B. Zhao, Z. Zhu, X.D. Qin, Z. Li, H. Zhang, J. Mater. Sci. Technol. 46 (2020) 88-97.
DOI URL |
[67] |
P. Qin, Y. Chen, Y.J. Liu, J. Zhang, L.Y. Chen, Y. Li, X. Zhang, C. Cao, H. Sun, L. Zhang, ACS Biomater. Sci. Eng. 5 (2019) 1141-1149.
DOI URL PMID |
[1] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[2] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[3] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
[4] | L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly. Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2021, 60(0): 139-146. |
[5] | D.X. Han, L. Zhao, S.H. Chen, G. Wang, K.C. Chan. Critical transitions in the shape morphing of kirigami metallic glass [J]. J. Mater. Sci. Technol., 2021, 61(0): 204-212. |
[6] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[7] | Yufang Zhao, Jinyu Zhang, YaQiang Wang, Shenghua Wu, Xiaoqing Liang, Kai Wu, Gang Liu, Jun Sun. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr [J]. J. Mater. Sci. Technol., 2021, 68(0): 16-29. |
[8] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[9] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[10] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
[11] | Xiaojie Zhou, Yuan Yao, Jian Zhang, Xiaomin Chen, Weiying Huang, Jing Pan, Haoran Wang, Maopeng Weng. A high-performance Mg-4.9Gd-3.2Y-1.1Zn-0.5Zr alloy via multidirectional forging after analyzing its compression behavior [J]. J. Mater. Sci. Technol., 2021, 70(0): 156-167. |
[12] | Yuan-Yun Zhao, Feng Qian, Chengliang Zhao, Chunxiao Xie, Jianguo Wang, Chuntao Chang, Yanjun Li, Lai-Chang Zhang. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses [J]. J. Mater. Sci. Technol., 2021, 70(0): 205-213. |
[13] | Zhuwei Lv, Chenchen Yuan, Haibo Ke, Baolong Shen. Defects activation in CoFe-based metallic glasses during creep deformation [J]. J. Mater. Sci. Technol., 2021, 69(0): 42-47. |
[14] | M.C. Ri, D.W. Ding, Y.H. Sun, W.H. Wang. Microstructure change in Fe-based metallic glass and nanocrystalline alloy induced by liquid nitrogen treatment [J]. J. Mater. Sci. Technol., 2021, 69(0): 1-6. |
[15] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||