J. Mater. Sci. Technol. ›› 2020, Vol. 59: 149-163.DOI: 10.1016/j.jmst.2020.04.049
• Research Article • Previous Articles Next Articles
Jiahao Chenga,*(), Xiaohua Hua, Xin Suna, Anupam Vivekb, Glenn Daehnb, David Cullena
Received:
2020-02-18
Revised:
2020-04-07
Accepted:
2020-04-12
Published:
2020-12-15
Online:
2020-12-18
Contact:
Jiahao Cheng
Jiahao Cheng, Xiaohua Hu, Xin Sun, Anupam Vivek, Glenn Daehn, David Cullen. Multi-scale characterization and simulation of impact welding between immiscible Mg/steel alloys[J]. J. Mater. Sci. Technol., 2020, 59: 149-163.
Fig. 1. Illustration of the vaporizing foil actuator spot welding impacting process. (a) the initial setup (b) right after the vaporization of the Al foil. (c) after the entire flyer impacts the target. The two highlighted regions are locations in which the two base materials are expected to bond.
Fig. 2. SEM micrograph showing the AZ31/DP590 impact weld by vaporizing foil actuator welding (VFAW) method. Cracks appeared in the Mg side very close to the interface. Some epoxy went into the crack as an artifact result of the polishing. Two regions are further examined. High magnification SEM-EDX is done in region A (Fig. 3); STEM-EDX and HRTEM are done in region B (Figs. 4-6).
Fig. 3. Higher magnification SEM examination of the region A in bonding zone (a, b) SEM image of the DP590-interlayer-AZ31 microstructure of the weld sample, from different sectioned quarters of the same sample. (c) SEM-EDX image correspond to (b) showing the Mg as the bright field (d) SEM-EDX image showing the Fe as the bright field.
Fig. 5. STEM-EDXS image of chemical components of the interlayer. The images of Mn and Al are normalized to show the gradient. A very small amount of Zn element is seen and is therefore not shown.
Fe | Mg | Mn | Al | C | O | Si | Cr | |
---|---|---|---|---|---|---|---|---|
Fe-side | 96.36 | 0.3 | 1.28 | 0.92 | 0.58 | 0 | 0.47 | 0.09 |
Mg-side | 11.39 | 76.57 | 0.23 | 2.26 | 2.88 | 6.37 | 0.29 | 0.01 |
Table 1 Chemical compositions at% of the interlayer and DP590.
Fe | Mg | Mn | Al | C | O | Si | Cr | |
---|---|---|---|---|---|---|---|---|
Fe-side | 96.36 | 0.3 | 1.28 | 0.92 | 0.58 | 0 | 0.47 | 0.09 |
Mg-side | 11.39 | 76.57 | 0.23 | 2.26 | 2.88 | 6.37 | 0.29 | 0.01 |
Fig. 6. HRTEM images at the bonding zone (marked region B of Fig. 2) of the AZ31-DP590 impact weld sample (a) at the interface between the interlayer and DP590, and (b) inside the interlayer.
Fig. 7. The STEM-EDXS scanning result along a line across the interface between the interlayer and DP590. The size of the scanning electron beam is around 0.3?nm, significantly smaller than the interlayer width. Hence, no deconvolution of the spot size was necessary.
DP590 | AZ31 | |
---|---|---|
Young’s modulus | 209 GPa | 45 GPa (300?K); 34.6?GPa (700?K) |
Poisson’s ratio | 0.28 | 0.29 |
Density | 7874 kg/m3 | 1738 kg/m3 |
Thermal expansion coefficient | 1.4e-05 K-1 | 2.6e-05 K-1 |
Thermal conductivity | 50.2 Wm-1K-1 | 156 Wm-1K-1 |
Specific heat | 490 JK-1 | 1050 JK-1 |
Table 2 Material property used in FE simulation.
DP590 | AZ31 | |
---|---|---|
Young’s modulus | 209 GPa | 45 GPa (300?K); 34.6?GPa (700?K) |
Poisson’s ratio | 0.28 | 0.29 |
Density | 7874 kg/m3 | 1738 kg/m3 |
Thermal expansion coefficient | 1.4e-05 K-1 | 2.6e-05 K-1 |
Thermal conductivity | 50.2 Wm-1K-1 | 156 Wm-1K-1 |
Specific heat | 490 JK-1 | 1050 JK-1 |
DP590 | AZ31 | |
---|---|---|
A | 430MPa | 153MPa |
B | 824MPa | 291.8MPa |
n | 0.51 | 0.1026 |
m | 0.917 | 1.5 |
Tmelt | 1773K | 923K |
Treference | 293K | 293K |
C | 0.017 | 0.013 |
$\dot{\varepsilon }_{\text{0}}^{{}}$ | 1 | 1 |
Table 3 Johnson-Cook model parameters used in the FE simulation.
DP590 | AZ31 | |
---|---|---|
A | 430MPa | 153MPa |
B | 824MPa | 291.8MPa |
n | 0.51 | 0.1026 |
m | 0.917 | 1.5 |
Tmelt | 1773K | 923K |
Treference | 293K | 293K |
C | 0.017 | 0.013 |
$\dot{\varepsilon }_{\text{0}}^{{}}$ | 1 | 1 |
Fig. 9. Eulerian-FE simulation results of the AZ31-DP590 impact welding process (a) at t=1.8μs, impact first occurs in the center of the target due to the distributed velocity. (b) oblique impact propagates laterally to the corner, and the jetting of AZ31 occurs from the collision at t=2.2μs (c) oblique impact continues to propagate with further jetting, and unloading starts from the center (d) at t=2.75μs, the material jet flow hit the corner of DP590 target and cause local deformation, the oblique collision start to slow down. (e) the AZ31 collide down on the tilted edge of DP590 target (f) the entire sample finished unloading.
Fig. 10. Details of Eulerian-FE simulation results at collision front at time t=2.4μs. (a) the contour of the velocity component V1 in the transverse direction, unit is m?s-1. The arrow marked the area that collision occurs (b) the contour of the velocity component V2 in the vertical direction. unit is m?s-1. (c) The temperature distribution, unit is kelvin (d) the equivalent element volume-averaged plastic strain.
Fig. 11. Measurement of (a) velocity component V1 in transverse direction (b) velocity component V2 in the vertical direction and (c) temperature at the moving collision front during the lateral propagation of oblique impact.
Fig. 13. MD simulation prediction of impact interface nanostructure evolution. The Mg flyer has a normal impact velocity of Vnormal=350m?s-1, and a transverse velocity Vtransverse=2850m?s-1. (a) 10 ps right after impact: “mixing” of atoms is observed at the right corner on the interface. (b) after holding for 0.4ns, (c) at the end of 5?ns holding, and (d) after reloading.
Fig. 14. MD simulation result of interfacial nanostructure evolution in the impact sample during cooling, after cooling from 9200?K to (a) 2500?K (b) 1800?K, (c) 1700?K, (d) 1000?K, and (e) 300?K.
Fig. 16. MD prediction of the impact weld interfacial nanostructure after cooling from 9200?K to 300?K in (a) 0.2?ns (b) 0.5 nanosecond, and (c) 1.0 nanosecond. The cooling rate is constant within the cooling period. Fig. 16(c) is the same as Fig. 14(e).
Fig. 17. (a, d) setup of Eulerian-FE simulation with two different initial flyer velocity distribution. (b, e) the corresponding snapshot during the lateral propagation of the oblique impact, (c, f) simulation results at the end of the unloading stage.
Fig. 18. Eulerian-FE simulation result of impact process using the same setup as in Fig. 8 but with material properties of AZ31 replaced by titanium and DP590 replaced by copper. Mechanical interlocking is observed.
[1] |
G. Song, T. Li, J. Yu, L. Liu, Materials 11 (2018) 2515.
DOI URL |
[2] |
L. Liu, G. Zou, H. Mori, S. Esmaeili, Y.N. Zhou, Mater. Des. 92 (2016) 445-449.
DOI URL |
[3] |
L. Liu, L. Xiao, J. Feng, L. Li, S. Esmaeili, Y. Zhou, Scr. Mater. 65 (2011) 982-985.
DOI URL |
[4] |
G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Mater. Charact. 142 (2018) 432-442.
DOI URL |
[5] |
Y. Zhao, J. Li, R. Qiu, H. Shi, Materials 12 (2019) 472.
DOI URL |
[6] |
D. Dietrich, D. Nickel, M. Krause, T. Lampke, M.P. Coleman, V. Randle, J. Mater. Sci. 46 (2011) 357-364.
DOI URL |
[7] |
Y.C. Chan, A.C.K. So, J.K.L. Lai, Mater. Sci. Eng. B 55 (1998) 5-13.
DOI URL |
[8] |
S. Chen, J. Huang, J. Xia, H. Zhang, X. Zhao, Metall. Mater. Trans. A 44 (2013) 3690-3696.
DOI URL |
[9] |
C. Schneider, T. Weinberger, J. Inoue, T. Koseki, N. Enzinger, Sci. Technol. Weld. Join. 16 (2011) 100-106.
DOI URL |
[10] |
Z.K. Zhang, X.J. Wang, P.C. Wang, G. Zhao, Trans. Nonferrous Met. Soc. China 24 (2014) 1709-1716.
DOI URL |
[11] |
S. Jana, Y. Hovanski, G.J. Grant, Metall. Mater. Trans. A 41 (2010) 3173-3182.
DOI URL |
[12] |
L. Li, C. Tan, Y. Chen, W. Guo, C. Mei, J. Mater. Process. Technol. 213 (2013) 361-375.
DOI URL |
[13] |
C. Tan, X. Song, S. Meng, B. Chen, L. Li, J. Feng, Int. J. Adv. Manuf. Technol. 86 (2016) 203-213.
DOI URL |
[14] |
L. Liu, X. Qi, Z. Wu, Mater. Lett. 64 (2010) 89-92.
DOI URL |
[15] |
D. Ren, L. Liu, Mater. Des. 59 (2014) 369-376.
DOI URL |
[16] |
L. Liu, L. Xiao, J.C. Feng, Y.H. Tian, S.Q. Zhou, Y. Zhou, Metall. Mater. Trans. A 41 (2010) 2651-2661.
DOI URL |
[17] |
S.M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Int. J. Adv. Manuf. Technol. 86 (2016) 1805-1825.
DOI URL |
[18] |
L. Liu, D. Ren, F. Liu, Materials 7 (2014) 3735-3757.
URL PMID |
[19] | P. Groche, C. Pabst, 10th European LS-DYNA Conference, Würzburg, Germany, 2015. |
[20] |
J. Li, Q. Yu, Z. Zhang, W. Xu, X. Sun, Appl. Phys. Lett. 108 (2016), 201606.
DOI URL |
[21] | M. Watanabe, S. Kumai, Mater. Sci.Forum 654-656 (2010) 755-758. |
[22] |
Kwee Faes, Waele De, Metals 9 (2019) 514.
DOI URL |
[23] |
F. Findik, Mater. Des. 32 (2011) 1081-1093.
DOI URL |
[24] |
P. Wang, D. Chen, Y. Ran, Y. Yan, H. Peng, X. Jiang, Materials 12 (2019) 3368.
DOI URL |
[25] |
V. Gupta, T. Lee, A. Vivek, K.S. Choi, Y. Mao, X. Sun, G. Daehn, J. Mater. Process. Technol. 264 (2019) 107-118.
DOI URL |
[26] |
O. Saresoja, A. Kuronen, K. Nordlund, Adv. Eng. Mater. 14 (2012) 265-268.
DOI URL |
[27] |
T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, Y. Wei, Acta Metall. Sin.( Engl. Lett.) 30 (2017) 983-991.
DOI URL |
[28] |
A. Vivek, S.R. Hansen, B.C. Liu, G.S. Daehn, J. Mater. Process. Technol. 213 (2013) 2304-2311.
DOI URL |
[29] |
O.T. Strand, D.R. Goosman, C. Martinez, T.L. Whitworth, W.W. Kuhlow, Rev. Sci. Instrum. 77 (2006), 083108.
DOI URL |
[30] | J.R. Johnson, G. Taber, A. Vivek, Y. Zhang, S. Golowin, K. Banik, G.K. Fenton, G.S. Daehn, in: 3rd Int. Conf. High Speed Form, 2008, pp. 35-44. |
[31] |
J. Chen, B. Shalchi Amirkhiz, R. Zhang, Mater. Lett. 196 (2017) 242-244.
DOI URL |
[32] |
S.Y. Chen, Z.W. Wu, K.X. Liu, X.J. Li, N. Luo, G.X. Lu, J. Appl. Phys. 113 (2013), 044901.
DOI URL |
[33] |
Z. Zhang, K. Wang, J. Li, Q. Yu, W. Cai, Sci. Rep. 7 (2017) 12505.
DOI URL PMID |
[34] | ABAQUS, Dassault Systémes Inc. Provid. RI, USA, 2017. |
[35] | G.G.R. Johnson, W.H.W. Cook, Proceedings 7th International Symposium on Ballistics, The Hague, 1983, pp. 541-547. |
[36] | K. Vedantam, D. Bajaj, N.S. Brar, S. Hill, AIP Conf. Proc. 845 (2006) 775-778. |
[37] | Q. Li, Handbook of Mechanics of Materials, 2019, pp. 845-872. |
[38] | S. Plimpton, J. Comput. Phys. 117 (1995) 1-19. |
[39] |
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I. Baskes, Phys. Rev. B 85 (2012), 245102.
DOI URL |
[40] |
H. Wang, Y. Wang, Metals 9 (2019) 144.
DOI URL |
[1] | Patryk Jedrasiak, Hugh Shercliff. Finite element analysis of small-scale hot compression testing [J]. J. Mater. Sci. Technol., 2021, 76(0): 174-188. |
[2] | Wenshuo Liang, Guimin Lu, Jianguo Yu. Theoretical prediction on the local structure and transport properties of molten alkali chlorides by deep potentials [J]. J. Mater. Sci. Technol., 2021, 75(0): 78-85. |
[3] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[4] | K.Q. Li, Z.J. Zhang, J.X. Yan, J.B. Yang, Z.F. Zhang. Mechanism transition of cross slip with stress and temperature in face-centered cubic metals [J]. J. Mater. Sci. Technol., 2020, 57(0): 159-171. |
[5] | Shidong Feng, n Li, K.C. Chan, Lei Zhao, Limin Wang, Riping Liu. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study [J]. J. Mater. Sci. Technol., 2020, 43(0): 119-125. |
[6] | Jun Jiang, Pengwan Chen, Weifu Sun. Monitoring micro-structural evolution during aluminum sintering and understanding the sintering mechanism of aluminum nanoparticles: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 57(0): 92-100. |
[7] | Xiaochun He, Yang Li, Yongjie Bi, Xiaomei Liu, Bing Zhou, Shangzhou Zhang, Shujun Li. Finite element analysis of temperature and residual stress profiles of porous cubic Ti-6Al-4V titanium alloy by electron beam melting [J]. J. Mater. Sci. Technol., 2020, 44(0): 191-200. |
[8] | Xiaojun Sun, Jie He, Bin Chen, Lili Zhang, Hongxiang Jiang, Jiuzhou Zhao, Hongri Hao. Microstructure formation and electrical resistivity behavior of rapidly solidified Cu-Fe-Zr immiscible alloys [J]. J. Mater. Sci. Technol., 2020, 44(0): 201-208. |
[9] | S.H. Chen, T. Li, W.J. Chang, H.D. Yang, J.C. Zhang, H.H. Tang, S.D. Feng, F.F. Wu, Y.C Wu. On the formation of shear bands in a metallic glass under tailored complex stress fields [J]. J. Mater. Sci. Technol., 2020, 53(0): 112-117. |
[10] | Kim Yeongseon, Jin Younghwan, Yoon Giwan, Chung In, Yoon Hana, Yoo Chung-Yul, Hyun Park Sang. Electrical characteristics and detailed interfacial structures of Ag/Ni metallization on polycrystalline thermoelectric SnSe [J]. J. Mater. Sci. Technol., 2019, 35(5): 711-718. |
[11] | X.X. Zhang, L.H. Wu, H. Andrä, W.M. Gan, M. Hofmann, D. Wang, D.R. Ni, B.L. Xiao, Z.Y. Ma. Effects of welding speed on the multiscale residual stresses in friction stir welded metal matrix composites [J]. J. Mater. Sci. Technol., 2019, 35(5): 824-832. |
[12] | Daudi Waryoba, Zahabul Islam, Baoming Wang, Aman Haque. Low temperature annealing of metals with electrical wind force effects [J]. J. Mater. Sci. Technol., 2019, 35(4): 465-472. |
[13] | Zhou Xiaochen, Yang Fan, Gong Xiaoyan, Zhao Ming, Zheng Yufeng, Sun Zhili. Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification [J]. J. Mater. Sci. Technol., 2019, 35(11): 2682-2692. |
[14] | Peng Xue, Simon Pauly, Weimin Gan, Songshan Jiang, Hongbo Fan, Zhiliang Ning, Yongjiang Huang, Jianfei Sun. Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation [J]. J. Mater. Sci. Technol., 2019, 35(10): 2221-2226. |
[15] | Aleksandr V. Korchuganov, Aleksandr N. Tyumentsev, Konstantin P. Zolnikov, Igor Yu. Litovchenko, Dmitrij S. Kryzhevich, Elazar Gutmanas, Shouxin Li, Zhongguang Wang, Sergey G. Psakhie. Nucleation of dislocations and twins in fcc nanocrystals: Dynamics of structural transformations [J]. J. Mater. Sci. Technol., 2019, 35(1): 201-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||