J. Mater. Sci. Technol. ›› 2020, Vol. 45: 98-107.DOI: 10.1016/j.jmst.2019.11.009
• Research Article • Previous Articles Next Articles
P.A. Mortona,b,*(), H.C. Taylora,c, L.E. Murra,c, O.G. Delgadoa,b, C.A. Terrazasa,b, R.B. Wickera,b
Received:
2019-11-06
Revised:
2019-11-28
Accepted:
2019-11-28
Published:
2020-05-15
Online:
2020-05-27
Contact:
P.A. Morton
P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion[J]. J. Mater. Sci. Technol., 2020, 45: 98-107.
P (w) | V (mm/s) | Defocus | Hatch space (mm) | Gaussian beam diameter (mm) | Energy flux Q (J/mm2) | |
---|---|---|---|---|---|---|
Param 1 | 50 | 25 | 10 | 0.225 | 0.188 | 8.9 |
Param 2 | 15 | 14.8 | ||||
Param 3 | 35 | 6.3 | ||||
Param 4 | 25 | 0 | 0.350 | 0.075 | 5.7 | |
Param 5 | -10 | 0.225 | 0.188 | 8.9 | ||
Param 6 | 0.113 | 17.8 | ||||
Param 7 | 0 | 0.175 | 0.075 | 11.4 | ||
Param 8 | 10 | 0.169 | 0.188 | 11.9 | ||
Param 9 | 200 | 0 | 0.035 | 0.075 | 7.1 | |
Param 10 | 75 | 37.5 | 10 | 0.225 | 0.188 | 8.9 |
Param 11 | 75 | 4.4 | ||||
Param 12 | 150 | 2.2 | ||||
Param 13 | 100 | 200 | 2.2 | |||
Param 14 | 50 | 8.9 | ||||
Param 15 | 50 | -10 | 8.9 | |||
Param 16 | 50 | 200 | 0 | 0.075 | 0.075 | 3.3 |
Table 1 Parameter matrix for initial surface laser nitriding experiments.
P (w) | V (mm/s) | Defocus | Hatch space (mm) | Gaussian beam diameter (mm) | Energy flux Q (J/mm2) | |
---|---|---|---|---|---|---|
Param 1 | 50 | 25 | 10 | 0.225 | 0.188 | 8.9 |
Param 2 | 15 | 14.8 | ||||
Param 3 | 35 | 6.3 | ||||
Param 4 | 25 | 0 | 0.350 | 0.075 | 5.7 | |
Param 5 | -10 | 0.225 | 0.188 | 8.9 | ||
Param 6 | 0.113 | 17.8 | ||||
Param 7 | 0 | 0.175 | 0.075 | 11.4 | ||
Param 8 | 10 | 0.169 | 0.188 | 11.9 | ||
Param 9 | 200 | 0 | 0.035 | 0.075 | 7.1 | |
Param 10 | 75 | 37.5 | 10 | 0.225 | 0.188 | 8.9 |
Param 11 | 75 | 4.4 | ||||
Param 12 | 150 | 2.2 | ||||
Param 13 | 100 | 200 | 2.2 | |||
Param 14 | 50 | 8.9 | ||||
Param 15 | 50 | -10 | 8.9 | |||
Param 16 | 50 | 200 | 0 | 0.075 | 0.075 | 3.3 |
Fig. 2. Image analysis procedure images (a) Unfiltered secondary electron SEM image of Nitride layer (b) SEM image with median filtering and histogram equalization applied with Matlab? (c) Image threshold using Ostu’s method via ImageJ software (d) Selection of errors of Otsu’s method thresholding for manual filling of dendrites (e) Final image for analysis with filtered procedure, image threshold and manual correction.
Fig. 3. (a) Param 7 showing relatively dense matrix of dendrites in the Ti64 Matrix and (b) param 14 with slightly finer dendrite arm spacing and more matrix present. Highlighted region indicates secondary arms. The number of arms in the line are counted and divided by the length of the region.
Hardness (GPa) | Thickness TiN (μm) | Volume fraction dendrites | Secondary arm spacing (μm) | |
---|---|---|---|---|
Param 1 | -- | 32 | 0.58 | 0.76 |
Param 2 | -- | 40 | 0.65 | 1.00 |
Param 3 | -- | 20 | 0.37 | 0.60 |
Param 4 | 8.40 | 200 | 0.66 | 0.65 |
Param 5 | 8.07 | 80 | 0.65 | 0.66 |
Param 6 | 9.25 | 70 | 0.72 | 0.91 |
Param 7 | 8.96 | 230 | 0.69 | 0.95 |
Param 8 | -- | 30 | 0.57 | 0.75 |
Param 9 | 7.35 | 90 | 0.58 | 0.32 |
Param 10 | 8.25 | 90 | 0.61 | 0.47 |
Param 11 | -- | 30 | 0.55 | 0.39 |
Param 12 | -- | 12 | 0.22 | 0.23 |
Param 13 | -- | 8 | 0.09 | 0.27 |
Param 14 | 9.34 | 130 | 0.62 | 0.53 |
Param 15 | 8.25 | 50 | 0.62 | 0.64 |
Param 16 | -- | 8 | 0.40 | 0.27 |
Table 2 Compiled results of primary surface nitriding experiments.
Hardness (GPa) | Thickness TiN (μm) | Volume fraction dendrites | Secondary arm spacing (μm) | |
---|---|---|---|---|
Param 1 | -- | 32 | 0.58 | 0.76 |
Param 2 | -- | 40 | 0.65 | 1.00 |
Param 3 | -- | 20 | 0.37 | 0.60 |
Param 4 | 8.40 | 200 | 0.66 | 0.65 |
Param 5 | 8.07 | 80 | 0.65 | 0.66 |
Param 6 | 9.25 | 70 | 0.72 | 0.91 |
Param 7 | 8.96 | 230 | 0.69 | 0.95 |
Param 8 | -- | 30 | 0.57 | 0.75 |
Param 9 | 7.35 | 90 | 0.58 | 0.32 |
Param 10 | 8.25 | 90 | 0.61 | 0.47 |
Param 11 | -- | 30 | 0.55 | 0.39 |
Param 12 | -- | 12 | 0.22 | 0.23 |
Param 13 | -- | 8 | 0.09 | 0.27 |
Param 14 | 9.34 | 130 | 0.62 | 0.53 |
Param 15 | 8.25 | 50 | 0.62 | 0.64 |
Param 16 | -- | 8 | 0.40 | 0.27 |
Fig. 4. (a) X-ray diffraction results from l-PBF Ti64 processed entirely in argon with image of the Ti64 cube surface subjected to x-ray radiation and (b) X-ray diffraction results from surface nitrided Ti64 in l-PBF machine with image of golden cube surface subjected to x-ray radiation. Sample nitrided with parameter 7.
Fig. 5. Comparing energy input to secondary arm spacing using the more traditional terms of power over hatch times scan speed giving a fairly linear trend.
Fig. 8. (a) Embedded TiN hardness profile cube one built with parameter set 7 with Ti64 re-melt power of 300 W (b) same nitriding conditions with re-melt of Ti64 powder at 165 W for two layers before returning to 300 W It is important to control the laser scanning when re-melting on top of the TiN layer to maintain as much of the hard layer as possible while also creating a good bond with no porosity. The arrow in both images indicates the l-PBF build direction, and the TiN layer is contained between the dashed lines.
P (w) | V (mm/s) | Spot diameter (mm) | Hatch space (mm) | # layers reduced power | |
---|---|---|---|---|---|
Nitriding parameter 7 | 50 | 25 | 0.075 | 0.175 | n/a |
Unaltered infill | 300 | 1000 | 0.08 | 0.090 | n/a |
Reduced power infill | 165 | 1000 | 0.08 | 0.090 | 2 |
Table 3 Nitriding parameters for TiN/Ti-6Al-4 V laminate structure.
P (w) | V (mm/s) | Spot diameter (mm) | Hatch space (mm) | # layers reduced power | |
---|---|---|---|---|---|
Nitriding parameter 7 | 50 | 25 | 0.075 | 0.175 | n/a |
Unaltered infill | 300 | 1000 | 0.08 | 0.090 | n/a |
Reduced power infill | 165 | 1000 | 0.08 | 0.090 | 2 |
Fig. 9. 2000× mag from middle area of embedded TiN layer same sample area from Fig. 4(b) the border of re-melted TiN above the as deposited TIN dendrites. Nitriding laser parameter 7.
Fig. 10. (a) Linear hardness profile across embedded TiN layer for sample built with no reduced power on infill after the nitriding layer (b) hardness profile of sample built with reduced power infill for 2 layers after TiN layer. The arrow in the images indicates the l-PBF build direction.
[1] | L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, NY, 1971. |
[2] | A. Bryce, P.H. Morton, T. Bell, Surface Engineering of Titanium and Titanium Alloys, ASM International, Materials Park, OH, 1994. |
[3] |
P. Schaff, Prog. Mater. Sci. 47 (1) (2002) 1-161.
DOI URL |
[4] | M. Azadi, A.S.R. Aghdam, Sh. Ahagarani, Int. J. Eng. Trans. B. Applications 29 (5) (2016) 677-686. |
[5] |
S. Zhang, W. Zhu , J. Mater. Process. Technol. 39 (1993) 165-177.
DOI URL |
[6] |
S. Wu, S. Wu, G. Chang, W. Zhang , Surf. Rev. Lett. 25 (1) (2018), 1850040.
DOI URL |
[7] | R.P. van Hove, I.M. Sierevelt, B.J. van Royen, P.A. Nolte, Biomed Res. Int. 485975 (2015) 9. |
[8] |
S. Fortuna, Y. Sharkeev, Thin Solid Films 377-378 (2000) 512-517.
DOI URL |
[9] |
B. Skori, D. Kaka, N. Bibie, M. Rakita, Surf. Sci. 566-568 (2004) 40-44.
DOI URL |
[10] |
D. Hoche, H. Schikora, H. Kutz, R. Queitsch, A. Emmel, P. Schaaf, Appl. Phys. A 91 (2008) 305-314.
DOI URL |
[11] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Breese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[12] |
J. Meaud, T. Sain, G.M. Hulbert, A.M. Waas, Int. J. Solids Struct. 50 (2013) 1342-1353.
DOI URL |
[13] | F. Barthelat, M. Mirkhalaf, J. Roy. Soc. Interface 10 (2013) (2013) 0711. |
[14] | V.V. Skorokhod, Layered composites: Poroshkovaya Metallurgiya 9-10 (433) (2003) 1-12. |
[15] |
L. Xue, M. Islam, A.K. Koul, M. Bibby, W. Wallace, Adv. Perform. Mater. 4 (1) (1997) 25-47.
DOI URL |
[16] |
B.S. Yilbas, I.Z. Naqavi, S.Z. Shuja, J. Manuf. Sci. Eng. 124 (4) (2002) 863-874.
DOI URL |
[17] |
J.J. Candel, V. Amigo , J. Laser Appl. 23 (2011), 022005.
DOI URL |
[18] |
J.J. Dai, S.Q. Hou, Surf. Rev. Lett. 16 (6) (2009) 789-796.
DOI URL |
[19] |
H. Peregrina-Barreto, I.R. Terol-Villalobos, J.J. Rangel-Magdaleno, A.M. Herrera-Navarro, L.A. Morales-Hernández, F. Manríquez-Guerrero, Measurement 46 (2013) 249-258.
DOI URL |
[20] |
S.S. Singh, C. Schwartzstein, J.J. Williams, X. Xiao, F. de Carlo, N. Chawla , J. Alloys. Compd. 602 (2014) 163-174.
DOI URL |
[21] | X. Chen, L. Yan, W. Li, F. Liou, J. Newkirk , J. Mech. Eng. Automation (January) (2016) 348-355. |
[22] |
A.M. Mullis, L. Farrell, R.F. Cochrane, N.J. Adkins, Metall. Mater. Trans. B 44 (4) (2013) 992-999.
DOI URL |
[23] |
R.S. Razavi, M. Salehi, M. Monirvaghefi, R. Mozafarinia, ISIJ Int. 47 (5) (2007) 709-714.
DOI URL |
[24] | R. Filip, Arch. Mater. Sci. Eng. 30 (1) (2008) 25-28. |
[25] |
J.H. Abboud, Surf. Coat. Technol. 214 (2013) 19-29.
DOI URL |
[26] |
M. Labudovic, R. Kovacevic, kl I. Kmecko, T.I. Khan, D. Blecic, Z. Blecic, Metall. Mater. Trans. A 30 (1999) 1597-1607.
DOI URL |
[27] | A.B. Kloosterman, J.T.M. De Hosson , Scripta Metall. Mater. 23 (4) (1995) 567-573. |
[28] | D.M. Stefanescu, R. Roxande, ASM Handbook, Vol. 9, ASM International, Materials Park, OH, 2004. |
[29] | M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974. |
[30] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th rev. edition, Trans Tech Publishing, Inc., Switzerland, 1998. |
[31] | H. Fredricksson, S. Akerlind, Solidification and Crystallization Processing in Metals and Alloys, J. Wiley & Sons, New York, 2012. |
[32] |
U.S. Bertoli, S.S. Wu, G. Guss, M.J. Matthews, J.M. Schoenung, Mater. Des. 135 (5) (2017) 385-396.
DOI URL |
[33] | L.E. Murr, Metallography, Microstruct. & Analysis 7 (2) (2018) 103-132. |
[34] | M.A. Meyers, K.K. Chawla, Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, New Jersey, 2002. |
[35] | L.E. Murr, Handbook of Materials Structures, Properties, Processing and Performance, Vol. 1, Springer, Heidelberg, 2015, pp. 325-339. |
[36] |
T. Amine, J.W. Newkirk, F. Liou, Case Studies in Thermal Eng. 3 (2014) 21-34.
DOI URL |
[37] | H. Kuwahara, N. Mazaki, M. Takahashi, T. Watanabe, X. Yang, T. Aizawa, Mater. Sci. Eng.A 319-321 (2001) 687-691. |
[38] |
S. Mridha, J. Mater. Process. Technol. 168 (3) (2005) 471-477.
DOI URL |
[39] | Z. Feng, Y. Yang, Z. Xu, Q. Shi , Mater. Res. 21 (4) (2018), e20180197. |
[40] | M. Lepicka, M. Gradzka-Dahlke, Rev. Adv. Mater. Sci. 46 (2016) 86-103. |
[41] | J.R. Cuthill, W.D. Hayes, R.E. Seebold, J. Research (NBS) A. Physics and Chemistry 64 (A) (1960) 119-125. |
[42] | H.A. Hegab, Manuf. Rev.(Les Ulis) 3 (2016) 11-35. |
[43] | S.E. Nalevry, J.R.A. Taylor, M.M. Porter, M.A. Meyers, J. McKitrick, Mater. Sci Eng. C 54 (2016) 1143-1167. |
[44] |
L.E. Murr, D.A. Ramirez, JOM 64 (2012) 469-474.
DOI URL |
[1] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[2] | Yoon Hwa, Christopher S. Kumai, Thomas M. Devine, Nancy Yang, Joshua K. Yee, Ryan Hardwick, Kai Burgmann. Microstructural banding of directed energy deposition-additively manufactured 316L stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 96-105. |
[3] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[4] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[5] | Jia Sun, Min Qi, Jinhu Zhang, Xuexiong Li, Hao Wang, Yingjie Ma, Dongsheng Xu, Jiafeng Lei, Rui Yang. Formation mechanism of α lamellae during β→α transformation in polycrystalline dual-phase Ti alloys [J]. J. Mater. Sci. Technol., 2021, 71(0): 98-108. |
[6] | Chaoyue Chen, Yingchun Xie, Longtao Liu, Ruixin Zhao, Xiaoli Jin, Shanqing Li, Renzhong Huang, Jiang Wang, Hanlin Liao, Zhongming Ren. Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 72(0): 39-51. |
[7] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[8] | X. Luo, L.H. Liu, C. Yang, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, Y.Y. Li. Overcoming the strength-ductility trade-off by tailoring grain-boundary metastable Si-containing phase in β-type titanium alloy [J]. J. Mater. Sci. Technol., 2021, 68(0): 112-123. |
[9] | Yanan Zhao, Zongqing Ma, Liming Yu, Ji Dong, Yongchang Liu. The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure [J]. J. Mater. Sci. Technol., 2021, 68(0): 184-190. |
[10] | Xuehao Gao, Xin Lin, Qiaodan Yan, Zihong Wang, Xiaobin Yu, Yinghui Zhou, Yunlong Hu, Weidong Huang. Effect of Cu content on microstructure and mechanical properties of in-situ β phases reinforced Ti/Zr-based bulk metallic glass matrix composite by selective laser melting (SLM) [J]. J. Mater. Sci. Technol., 2021, 67(0): 174-185. |
[11] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[12] | A.N.M. Tanvir, Md. R.U. Ahsan, Gijeong Seo, Brian Bates, Chanho Lee, Peter K. Liaw, Mark Noakes, Andrzej Nycz, Changwook Ji, Duck Bong Kim. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 67(0): 80-94. |
[13] | Dongdong Dong, Cheng Chang, Hao Wang, Xingchen Yan, Wenyou Ma, Min Liu, Sihao Deng, Julien Gardan, Rodolphe Bolot, Hanlin Liao. Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism [J]. J. Mater. Sci. Technol., 2021, 73(0): 151-164. |
[14] | Qingkai Shen, Xiangdong Kong, Xizhang Chen. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties [J]. J. Mater. Sci. Technol., 2021, 74(0): 136-142. |
[15] | Md. R.U. Ahsan, Xuesong Fan, Gi-Jeong Seo, Changwook Ji, Mark Noakes, Andrzej Nycz, Peter K. Liaw, Duck Bong Kim. Microstructures and mechanical behavior of the bimetallic additively-manufactured structure (BAMS) of austenitic stainless steel and Inconel 625 [J]. J. Mater. Sci. Technol., 2021, 74(0): 176-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||