J. Mater. Sci. Technol. ›› 2020, Vol. 45: 84-91.DOI: 10.1016/j.jmst.2019.11.030
• Research Article • Previous Articles Next Articles
Yan Xinga,b, Jing Chengb, Jian Wua, Mengfei Zhangb, Xing-ao Lia, Wei Panb,*()
Received:
2019-10-15
Revised:
2019-11-04
Accepted:
2019-11-11
Published:
2020-05-15
Online:
2020-05-27
Contact:
Wei Pan
Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater[J]. J. Mater. Sci. Technol., 2020, 45: 84-91.
Fig. 2. Morphology characterization of NiNPs-LO nanowires. (a) The SEM image of precursor nanowires. (b) and (c) SEM and TEM images of NiNPs-LO nanowires with 6 at.% Ni with EDS mapping of La, O and Ni. (d) TEM image of ultra-thin cross section slice of nanowires with EDS mapping inside. (e) HRTEM images of the composite interface.
Fig. 5. Adsorption kinetic curves of RhB adsorption onto NiNPs-LO nanowires and the corresponding fitting results of pseudo-first-order and pseudo-second-order models.
Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|
K1 (min-1) | qe (mg g-1) | R2 | K2 (g mg-1 min-1) | qe (mg g-1) | R2 |
0.037 | 36.1 | 0.892 | 0.058 | 42.2 | 0.994 |
Table 1 Kinetic model parameters for the adsorption of RhB onto the NiNPs-LO nanowires.
Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|
K1 (min-1) | qe (mg g-1) | R2 | K2 (g mg-1 min-1) | qe (mg g-1) | R2 |
0.037 | 36.1 | 0.892 | 0.058 | 42.2 | 0.994 |
Adsorbents | k2 (g mg-1 min-1) | Equilibrium time (min) | Ref. |
---|---|---|---|
Carbon coated monolith | 32 × 10-5 | 2000 | [ |
PA-RGO | 0.020 | 50 | [ |
Nanoporous PDVB-VI | 0.0024 | 50 | [ |
BPH-AC | 8.50 × 10-5 | 300 | [ |
CZIF-8 | 12 × 10-4 | 100 | [ |
UIO-66 | 0.00473 | 20 | [ |
kaolinite | 0.0023 | 90 | [ |
Natural zeolite | 0.0015 | 50 | [ |
Iron-pillared bentonite | 0.00108 | 80 | [ |
BiOI | 4.87 × 10-4 | 30 | [ |
NiNPs-LO nanowires | 0.055 | 10 | This work |
Table 2 RhB uptake properties of recently reported adsorbents.
Adsorbents | k2 (g mg-1 min-1) | Equilibrium time (min) | Ref. |
---|---|---|---|
Carbon coated monolith | 32 × 10-5 | 2000 | [ |
PA-RGO | 0.020 | 50 | [ |
Nanoporous PDVB-VI | 0.0024 | 50 | [ |
BPH-AC | 8.50 × 10-5 | 300 | [ |
CZIF-8 | 12 × 10-4 | 100 | [ |
UIO-66 | 0.00473 | 20 | [ |
kaolinite | 0.0023 | 90 | [ |
Natural zeolite | 0.0015 | 50 | [ |
Iron-pillared bentonite | 0.00108 | 80 | [ |
BiOI | 4.87 × 10-4 | 30 | [ |
NiNPs-LO nanowires | 0.055 | 10 | This work |
Fig. 6. Adsorption isotherms of RhB adsorption onto NiNPs-LO nanowires (a) and the corresponding Langmuir (b) and Freundlich (c) models’ fitting curves.
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
KL (L mg-1) | qe (mg g-1) | R2 | KF (mg g-1) | 1/n | R2 |
6.18 | 39.65 | 0.996 | 28.27 | 0.246 | 0.759 |
Table 3 Langmuir and Freundlich isotherm parameters for the adsorption of RhB onto the NiNPs-LO nanowires.
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
KL (L mg-1) | qe (mg g-1) | R2 | KF (mg g-1) | 1/n | R2 |
6.18 | 39.65 | 0.996 | 28.27 | 0.246 | 0.759 |
Fig. 9. The mechanism of dyes adsorption on the NiNPs-LO nanowires. (a) Band structure of the composite structure and the illustration of the adsorption process. (b) FT-IR spectra of the NiNPs-LO nanowires (black line), RhB (red line) and the NiNPs-LO nanowires with adsorbed RhB (orange line).
[1] | C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit , J. Environ. Manage. 182 (2016) 351-366. |
[2] | K.R. Ramakrishna, T. Viraraghavan, Water Sci. Technol. 36 (1997) 189-196. |
[3] | J. Qu, M. Fan, Crit. Rev. Environ. Sci. Technol. 40 (2010) 519-560. |
[4] | V.K. Garg, M. Amita, R. Kumar, R. Gupta, Dyes Pigments 63 (2004) 243-250. |
[5] | R. Malik, D.S. Ramteke, S.R. Wate, Waste Manage. 27 (2007) 1129-1138. |
[6] | T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. Rep. 77 (2001) 247-255. |
[7] | R. Maas, S. Chaudhari, Process Biochem. 40 (2005) 699-705. |
[8] | T. Oki, S. Kanae, Science 313 (2006) 1068-1072. |
[9] | E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30 (2004) 953-971. |
[10] | J. Ren, Y.Z. Wu, J.M. Pan, X.H. Yan, M. Chen, J.J. Wang, D.F. Wang, C. Zhou, Q. Wang, X.N. Cheng , J. Adv. Ceram. 7 (2018) 50-57. |
[11] | L. Szpyrkowicz, C. Juzzolino, S.N. Kaul, Water Res. 35 (2001) 2129-2136. |
[12] | H. Ali, Soil Pollut. 213 (2010) 251-273. |
[13] | S.D. Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Sust. Mater. Technol. 9 (2016) 10-40. |
[14] | D. Malwal, P. Gopinath , J. Hazard. Mater. 321 (2017) 611-621. |
[15] | S. Yan, Y.M. Pan, L. Wang, J.J. Liu, Z.J. Zhang, W.L. Huo, J.L. Yang, Y. Huang , J. Adv. Ceram. 7 (2018) 30-40. |
[16] | G.Z. Kyzas, D.N. Bikiaris, A.C. Mitropoulos, Polym. Int. 66 (2017) 1800-1811. |
[17] | M. Long, Y. Qin, B. Tan, B. Zhou, Nano-Micro Lett. 6 (2014) 125-135. |
[18] | Y. Han, W. Li, J. Zhang, H. Meng, Y. Xu, X. Zhang, RSC Adv. 5 (2015) 104915-104922. |
[19] | X.Y. Li, D. Han, J.F. Xie, Z.B. Wang, Z.Q. Gong, B. Li, RSC Adv. 8 (2018) 29237-29247. |
[20] | Z. Li, Potter , N. Rasmussen, J. Weng, J.G. Lv, Chemosphere 202 (2018) 127-135. |
[21] | S. Hosseini, M.A. Khan, M.R. Malekbala, W. Cheah, T.S.Y. Choong, Chem. Eng. J. 171 (2011) 1124-1131. |
[22] | Y. Wu, F. Yang, X. Liu, G. Tan, D. Xiao, Appl. Surf. Sci. 435 (2018) 281-289. |
[23] | J. Qiu, Y. Feng, X. Zhang, M. Jia, J. Yao, J. Colloid Interface Sci. 499 (2017) 151-158. |
[24] | T.A. Khan, S. Dahiya, I. Ali, Appl. Clay Sci. 69 (2012) 58-66. |
[25] | S. Wang, Zhu Z.H, J.Hazard. Mater. 136 (2006) 946-952. |
[26] | M.F. Hou, C.X. Ma, W.D. Zhang, X.Y. Tang, Y.N. Fan, H.F. Wan , J. Hazard. Mater. 186 (2011) 1118-1123. |
[27] | Y. Lv, P. Li, Y. Che, C. Hu, S. Ran, P. Shi, W. Zhang , Mater. Res. 21 (2018), e20170705. |
[28] | A.B. Alsbaiee, J. Smith, L. Xiao, Y. Ling, D.E. Helbling, W.R. Dichtel, Nature 529 (2016) 190-195. |
[29] | S.F. Wang, C.M. Lu, Y.C. Wu, Y.C. Yang, T.W. Chiu, Int. J. Hydrogen Energy 36 (2011) 3666-3672. |
[30] | D.D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21 (2009) 3479-3484. |
[31] | Y.S. Ho , J. Hazard. Mater. 136 (2006) 681-689. |
[32] | Y. Liu, L. Shen, Langmuir 24 (2008) 11625-11630. |
[33] | I. Langmuir , J. Am. Chem. Soc. 40 (1918) 1361-1403. |
[34] | C. Xu, Z. Yu, K. Yuan, X. Jin, S. Shi, X. Wang, L. Zhu, G. Zhang, D. Xu, H. Jiang, Ceram. Int. 45 (2019) 3743-3753. |
[35] | J. Yu, G. Wang, B. Cheng, M. Zhou, Appl. Catal. B-Environ. 69 (2007) 171-180. |
[36] | S. Azizian, J. Colloid Interface Sci. 276 (2004) 47-52. |
[37] | Z. Li, Y. Sun, J. Xing, Y. Xing, A. Meng , J. Hazard. Mater. 352 (2018) 204-214. |
[38] | H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy , J. Hazard. Mater. 182 (2010) 842-847. |
[39] | M. Prasad, H. Xu, Y.S. Saxena , J. Hazard. Mater. 154 (2008) 221-229. |
[40] | S.G. Miguel, S. Lambert, N. Graham, Water Res. 35 (2001) 2740-2748. |
[41] | J. Duan, S. Chen, B.A. Chambers, G.G. Andersson, S.Z. Qiao, Adv. Mater. 27 (2015) 4234-4241. |
[42] | D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423-3452. |
[43] | E.H. Rhoderick, IEE Proc. Solid-State Electron Dev. 129 (1982) 1-14. |
[1] | Mengmeng Zhang, Jiajun Wang, Yang Wang, Jinfeng Zhang, Xiaopeng Han, Yanan Chen, Yuesheng Wang, Zaghib Karim, Wenbin Hu, Yida Deng. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts [J]. J. Mater. Sci. Technol., 2021, 62(0): 119-127. |
[2] | Hairui Xing, Ping Hu, Shilei Li, Yegai Zuo, Jiayu Han, Xingjiang Hua, Kuaishe Wang, Fan Yang, Pengfa Feng, Tian Chang. Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: A review [J]. J. Mater. Sci. Technol., 2021, 62(0): 180-194. |
[3] | Kun Ye, Bochong Wang, Anmin Nie, Kun Zhai, Fusheng Wen, Congpu Mu, Zhisheng Zhao, Jianyong Xiang, Yongjun Tian, Zhongyuan Liu. Broadband photodetector of high quality Sb2S3 nanowire grown by chemical vapor deposition [J]. J. Mater. Sci. Technol., 2021, 75(0): 14-20. |
[4] | Fuqiang Wan, Wenxuan Wang, Zhaoyong Zou, Hao Xie, Hang Ping, Zhengyi Fu. Bioprocess-inspired preparation of silica with varied morphologies and potential in lithium storage [J]. J. Mater. Sci. Technol., 2021, 72(0): 61-68. |
[5] | Xudong Liu, Ying Huang, Ling Ding, Xiaoxiao Zhao, Panbo Liu, Tiehu Li. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption [J]. J. Mater. Sci. Technol., 2021, 72(0): 93-103. |
[6] | Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature [J]. J. Mater. Sci. Technol., 2021, 73(0): 128-138. |
[7] | Ruimei Yuan, Hejun Li, Xuemin Yin, Peipei Wang, Jinhua Lu, Leilei Zhang. Construction of multi-structures based on Cu NWs-supported MOF-derived Co oxides for asymmetric pseudocapacitors [J]. J. Mater. Sci. Technol., 2021, 65(0): 182-189. |
[8] | Liuyang Cao, Xue Cheng, Hongjie Xu, Guoqin Cao, Junhua Hu, Guosheng Shao. Planar Li growth on Li21Si5 modified Li metal for the stabilization of anode [J]. J. Mater. Sci. Technol., 2021, 76(0): 156-165. |
[9] | Mengmeng Wang, Jinshan Yang, Xiao You, Chunjing Liao, Jingyi Yan, Jing Ruan, Shaoming Dong. Nanoinfiltration behavior of carbon nanotube based nanocomposites with enhanced mechanical and electrical properties [J]. J. Mater. Sci. Technol., 2021, 71(0): 23-30. |
[10] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[11] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[12] | Yuwei Ye, Zilong Jiang, Yangjun Zou, Hao Chen, Shengda Guo, Qiumin Yang, Liyong Chen. Evaluation of the inhibition behavior of carbon dots on carbon steel in HCl and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 43(0): 144-153. |
[13] | Xi Xie, Rui Yang, Yuyou Cui, Qing Jia, Chunguang Bai. Fabrication of textured Ti2AlC lamellar composites with improved mechanical properties [J]. J. Mater. Sci. Technol., 2020, 38(0): 86-92. |
[14] | Oluwafunmilola Ola, Yu Chen, Qijian Niu, Yongde Xia, Tapas Mallick, Yanqiu Zhu. Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage [J]. J. Mater. Sci. Technol., 2020, 36(0): 70-78. |
[15] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||