J. Mater. Sci. Technol. ›› 2020, Vol. 44: 48-53.DOI: 10.1016/j.jmst.2019.10.018
• Research Article • Previous Articles Next Articles
Yuecun Wanga, Meng Lia, Yueqing Yanga, Xin’ai Zhaoa, Evan Mab*(), Zhiwei Shanb*(
)
Received:
2019-08-08
Revised:
2019-09-25
Accepted:
2019-10-07
Published:
2020-05-01
Online:
2020-05-21
Contact:
Evan Ma,Zhiwei Shan
Yuecun Wang, Meng Li, Yueqing Yang, Xin’ai Zhao, Evan Ma, Zhiwei Shan. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures[J]. J. Mater. Sci. Technol., 2020, 44: 48-53.
Fig. 1. Sample information. (a) SEM sideview image of a typical magnesium pillar with the diameter of ~ 100 nm. (b) Bright-field TEM image of the pillar framed by white dashed rectangle. (c) High resolution TEM image and the corresponding EELS mapping (d) of the magnesium-oxide interface, indicated by the black dashed frame in (b).
Fig. 2. Dynamic oxidation process and mechanism of Mg from room temperature to 200 °C. (a) TEM images showing the damage process of native oxide scale including the voids formation, voids growth and oxide scale cracking, as well as the following process of MgO ridges’ growth from cracks at high temperatures. The inset selected area electron patterns indicate the initial magnesium pillar with a thin amorphous oxide surface layer is oxidized into MgO completely at 200 °C. (b) Sketches showing the thermal oxidation mechanism. i. Oxygen adsorbed on the native oxide surface at room temperature. ii. With increasing temperature, the outward Mg2+ ions diffusion channeled by the already existing vacancies is accelerated along with oxide scale thickening gradually. iii. The simultaneous inward vacancy diffusion leads to vacancy segregation forming voids, which, together with the tensile internal stress induced by the MgO scale thickening, cause crack formation in the oxide scale. Oxygen penetrates inward and reacts with fresh Mg at cracks. iv. Catastrophic oxidation occurs with fast MgO ridge growth forming a spongy morphology.
Fig. 3. Thermal oxidation inhibition effect of MgCO3 scale directly transformed from the native oxide scale on the surface of magnesium. (a) Bright field TEM image and the corresponding SAEDP of a typical Mg pillar fabricate by FIB. (b) The pillar in (a) after carbonation inside E-TEM under 4 Pa CO2 and electron beam irradiation. Its SAEDP illustrates that carbonated surface layer is composed of the newly formed MgCO3 and some remained MgO, which are marked by the yellow and blue dashed curve, respectively. The main body of the pillar after treatment is still Mg crystal. (c) The carbonated pillar with MgcO3 scale was heated from room temperature to 350 °C in ~4 Pa oxygen. At 250 °C, SAEDP was taken, and compared with the diffraction patterns in (b), it shows no obvious change. Chose one diffraction spot (marked by the red circle) from the {024} diffraction ring of MgCO3 to take the corresponding dark-field TEM image (framed by red), showing that MgCO3 mainly distributes on the surface. Approaching 350 °C, the TEM projection image of the pillar looks like shortened because the weld (connection of hotplate and magnesium lamella base) fracture at high temperatures. Actually, during the entire heating process in oxygen, the tested pillar kept intact and free from obvious oxidation.
Fig. 4. Comparison of size changes of the untreated and carbonated magnesium pillars during the oxidation at different temperatures. For each pillar, the size changes of two different parts were measured (the top right inset schematic diagram). The black and red curves represent the size changes of the Mg pillar with native oxide layer and the Mg pillar with MgCO3 scale, respectively. For the untreated pillar, its size changes dramatically along with temperature, and the changes themselves are temperature dependent, indicating the oxidation mechanism transforming from diffusion controlled to chemical reaction controlled. While, for the carbonated pillar, its size almost keeps a constant, suggesting no obvious oxidation. The inset schematics illustrate the vacancy diffusion induced initial oxidation of Mg with oxide layer (left, black) and the oxidation inhibition effect of MgCO3 layer with few vacancies (right, red), respectively.
[1] |
T.M. Pollock, Science 328 (2010) 986-987.
DOI URL PMID |
[2] | Q. Tan, A. Atrens, N. Mo, M.-X. Zhang, Corros.Sci. 112(2016) 734-759. |
[3] | K.U. Kainer, B.L. Mordike, Weinheim, 2000. |
[4] | M.M. Avedesian, H. Baker, ASM International, 1999. |
[5] |
V. Fournier, P. Marcus, I. Olefjord, Surf. Interface Anal. 34(2002) 494-497.
DOI URL |
[6] | Czerwinski F. Croatia, 2011. |
[7] | F.C. Campbell, New York, 2011. |
[8] |
A.A. Luo, Int. Mater. Rev. 49(2004) 13-30.
DOI URL |
[9] | D.J. Young, Elsevier, 2008. |
[10] |
C. Lea, C.J. Molinari, Mater. Sci. 19(1984) 2336-2352.
DOI URL |
[11] |
F. Czerwinski, JOM 64 (2012) 1477-1483.
DOI URL |
[12] |
J. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, Corros. Sci. 39(1997) 1397-1414.
DOI URL |
[13] |
Z. Zhang, X. Fu, M. Mao, Q. Yu, S.X. Mao, J. Li, Z. Zhang, Nano Res. 9(2016) 2796-2802.
DOI URL |
[14] |
F. Czerwinski, Acta Mater. 50(2002) 2639-2654.
DOI URL |
[15] |
F. Czerwinski, Int. Mater. Rev. 60(2015) 264-296.
DOI URL |
[16] |
T. Takeno, S. Yuasa, Combust. Sci. Technol. 21(1980) 109-121.
DOI URL |
[17] | X.Q. Zeng, Q.D. W, L. Yizhen, Z. Yanping, D. Wenjiang, Z.J. Yunhu, Mater. Sci. Technol. 112(2001) 17-23. |
[18] |
P. Li, B. Tang, E. Kandalova, Mater. Lett. 59(2005) 671-675.
DOI URL |
[19] | P. Cao, M. Qian, D.H.St John, Scripta Mater. 51(2004) 647-651. |
[20] |
A. Luo, M. Pekguleryuz, J. Mater. Sci. 29(1994) 5259-5271.
DOI URL |
[21] | H. Zheng, S. Wu, H. Sheng, C. Liu, Y. Liu, F. Cao, Z. Zhou, X. Zhao, D. Zhao, Wang,J. Appl. Phys. Lett. 104(2014), 141906. |
[22] | F. Czerwinski, JOM 56 (2004) 29-31. |
[23] |
M. Li, D.G. Xie, Evan Ma, J. Li, X.X. Zhang, Z.W. Shan, Nat. Commun. 8(2017) 14564.
DOI URL PMID |
[24] | Kofstad P. Elsevier Applied Science Publishers, Essex (1988). |
[25] |
D. Alfe, M. Gillan,Phys. Rev. B 71 (2005), 220101.
DOI URL |
[26] | N. Pilling, J. Inst. Met. 29(1923) 529-582. |
[27] | A. Guy, J. Hren, Addison-Wesley, 1974. |
[28] |
J.A. Van Orman, K.L. Crispin, Rev. Mineral. Geochem. 72(2010) 757-825.
DOI URL |
[29] |
Y.C. Wang, B.Y. Liu, X.I. Zhao, X. Zhang, Y. Miao, N. Yang, B. Yang, L. Zhang, W. Kuang, J. Li, Nat. Commun. 9(2018) 4058.
DOI URL PMID |
[30] |
R.T. Cygan, K. Wright, D.K. Fisler, J.D. Gale, B. Slater, Mol. Simulat. 28(2002) 475-495.
DOI URL |
[31] |
M. Isshiki, T. Irifune, K. Hirose, S. Ono, Y. Ohishi, T. Watanuki, E. Nishibori, M. Takata, M. Sakata, Nature 427 (2004) 60.
DOI URL PMID |
[32] |
R. Lindström, L.G. Johansson, G.E. Thompson, P. Skeldon, J.E. Svensson, Corros. Sci. 46(2004) 1141-1158.
DOI URL |
[33] |
B. Feng, H. An, E. Tan, Energy Fuel 21 (2007) 426-434.
DOI URL |
[34] |
L.Q. Zhang, Y. Tang, Q. Peng, T. Yang, Q. Liu, Y. Wang, Y. Li, C. Du, Y. Sun, L. Cui, Nat. Commun. 9(2018) 96.
DOI URL PMID |
[35] |
P. Turner, T.J. Bullough, R. Devenish, D. Maher, C. Humphreys, Phil. Mag. Lett. 61(1990) 181-193.
DOI URL |
[36] |
J.A. Sundararajan, M. Kaur, Y. Qiang, J. Phys. Chem. C 119 (2015) 8357-8363.
DOI URL |
[37] | S. Was Gary, Fundamentals of Radiation Materials Science, Springer, Berlin Heidelberg, 2007. |
[1] | Qiyu Liao, Yanchao Jiang, Qichi Le, Xingrui Chen, Chunlong Cheng, Ke Hu, Dandan Li. Hot deformation behavior and processing map development of AZ110 alloy with and without addition of La-rich Mish Metal [J]. J. Mater. Sci. Technol., 2021, 61(0): 1-15. |
[2] | Yuhui Zhang, Yuling Liu, Shuhong Liu, Hai-Lin Chen, Qing Chen, Shiyi Wen, Yong Du. Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys [J]. J. Mater. Sci. Technol., 2021, 62(0): 70-82. |
[3] | Haiyue Zu, Kelvin Chau, Temitope Olumide Olugbade, Lulu Pan, Chris Halling Dreyer, Dick Ho-Kiu Chow, Le Huang, Lizhen Zheng, Wenxue Tong, Xu Li, Ziyi Chen, Xuan He, Ri Zhang, Jie Mi, Ye Li, Bingyang Dai, Jiali Wang, Jiankun Xu, Kevin Liu, Jian Lu, Ling Qin. Comparison of modified injection molding and conventional machining in biodegradable behavior of perforated cannulated magnesium hip stents [J]. J. Mater. Sci. Technol., 2021, 63(0): 145-160. |
[4] | Shuai-Feng Chen, Hong-Wu Song, Ming Cheng, Ce Zheng, Shi-Hong Zhang, Myoung-Gyu Lee. Texture modification and mechanical properties of AZ31 magnesium alloy sheet subjected to equal channel angular bending [J]. J. Mater. Sci. Technol., 2021, 67(0): 211-225. |
[5] | Yujie Cui, Kenta Aoyagi, Huakang Bian, Yuichiro Hayasaka, Akihiko Chiba. Effects of the aluminum concentration on twin boundary motion in pre-strained magnesium alloys [J]. J. Mater. Sci. Technol., 2021, 73(0): 116-127. |
[6] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[7] | Xiaofei Cui, Wei Fu, Daqing Fang, Guangli Bi, Zijun Ren, Shengwu Guo, Suzhi Li, Xiangdong Ding, Jun Sun. Mechanical properties and deformation mechanisms of a novel fine-grained Mg-Gd-Y-Ag-Zr-Ce alloy with high strength-ductility synergy [J]. J. Mater. Sci. Technol., 2021, 66(0): 64-73. |
[8] | Nagasivamuni Balasubramani, Gui Wang, David H. StJohn, Matthew S. Dargusch. Current understanding of the origin of equiaxed grains in pure metals during ultrasonic solidification and a comparison of grain formation processes with low frequency vibration, pulsed magnetic and electric-current pulse techniques [J]. J. Mater. Sci. Technol., 2021, 65(0): 38-53. |
[9] | Liang Wu, Xingxing Ding, Zhicheng Zheng, Aitao Tang, Gen Zhang, Andrej Atrens, Fusheng Pan. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64(0): 66-72. |
[10] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[11] | Dan Zhang, Qi Han, Kun Yu, Xiaopeng Lu, Ying Liu, Ze Lu, Qiang Wang. Antibacterial activities against Porphyromonas gingivalis and biological characteristics of copper-bearing PEO coatings on magnesium [J]. J. Mater. Sci. Technol., 2021, 61(0): 33-45. |
[12] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[13] | Fenghua Wang, Miaolin Feng, Yanyao Jiang, Jie Dong, Zhenyan Zhang. Cyclic shear deformation and fatigue of extruded Mg-Gd-Y magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 74-81. |
[14] | Risheng Pei, Sandra Korte-Kerzel, Talal Al-Samman. Normal and abnormal grain growth in magnesium: Experimental observations and simulations [J]. J. Mater. Sci. Technol., 2020, 50(0): 257-270. |
[15] | Hui Pan, Liwei Wang, Yi Lin, Feng Ge, Kang Zhao, Xin Wang, Zhongyu Cui. Mechanistic study of ammonium-induced corrosion of AZ31 magnesium alloy in sulfate solution [J]. J. Mater. Sci. Technol., 2020, 54(0): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||