J. Mater. Sci. Technol. ›› 2020, Vol. 44: 140-147.DOI: 10.1016/j.jmst.2020.01.032
• Research Article • Previous Articles Next Articles
Yinling Zhangab, Aihan Fengac**(), Shoujiang Quac, Jun Shenad, Daolun Chenb*(
)
Received:
2019-08-25
Revised:
2019-09-29
Accepted:
2019-10-06
Published:
2020-05-01
Online:
2020-05-21
Contact:
Aihan Feng,Daolun Chen
Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy[J]. J. Mater. Sci. Technol., 2020, 44: 140-147.
Fig. 2. (a) SEM micrograph of as-cast Ti2AlNb-based alloy; EBSD maps of (b) phase distribution and (c) orientation of O-Ti2AlNb phase; (d) grain boundary distribution of O-Ti2AlNb phase (LAGBs and HAGBs).
Strain rate, s-1 | σy, MPa | σUTS, MPa | Elongation, % | Hc |
---|---|---|---|---|
1 × 10-2 | 837 | 966 | 1.5 | 0.15 |
1 × 10-3 | 828 | 960 | 1.7 | 0.16 |
1 × 10-4 | 876 | 971 | 1.5 | 0.11 |
1 × 10-5 | 765 | 925 | 1.8 | 0.21 |
Table 1 Tensile properties of as-cast Ti2AlNb-based alloy obtained at different strain rates at room temperature.
Strain rate, s-1 | σy, MPa | σUTS, MPa | Elongation, % | Hc |
---|---|---|---|---|
1 × 10-2 | 837 | 966 | 1.5 | 0.15 |
1 × 10-3 | 828 | 960 | 1.7 | 0.16 |
1 × 10-4 | 876 | 971 | 1.5 | 0.11 |
1 × 10-5 | 765 | 925 | 1.8 | 0.21 |
Fig. 3. Typical stress-strain hysteresis loops at various total strain amplitudes of as-cast Ti2AlNb-based alloy in the (a) first cycle, and (b) mid-life cycle.
Fig. 4. Stress amplitude versus the number of cycles of the as-cast Ti2AlNb-based alloy tested at different total strain amplitudes at a strain ratio of Rε = -1.
Fig. 5. Plastic strain amplitude versus the number of cycles of the as-cast Ti2AlNb-based alloy tested at different total strain amplitudes at a strain ratio of Rε = -1.
Fig. 6. Total strain amplitude versus the number of cycles to failure for the as-cast Ti2AlNb-based alloy, in comparison with the data available for intermetallics reported in the literature [[62], [63], [64]].
Low cycle fatigue parameters | Symbol | Value |
---|---|---|
Cycle strain hardening exponent | n’ | 0.09 |
Cyclic strength coefficient, MPa | K’ | 1366 |
Fatigue strength coefficient, MPa | σ'f | 1369 |
Fatigue strength exponent | b | -0.077 |
b[Morrow] | -0.060 | |
b [Tomkins] | -0.072 | |
Fatigue ductility coefficient, % | ε'f | 0.44 |
Fatigue ductility exponent | c | -0.82 |
c[Morrow] | -0.70 | |
c [Tomkins] | -0.86 |
Table 2 Low cycle fatigue parameters of the as-cast Ti2AlNb-based alloy.
Low cycle fatigue parameters | Symbol | Value |
---|---|---|
Cycle strain hardening exponent | n’ | 0.09 |
Cyclic strength coefficient, MPa | K’ | 1366 |
Fatigue strength coefficient, MPa | σ'f | 1369 |
Fatigue strength exponent | b | -0.077 |
b[Morrow] | -0.060 | |
b [Tomkins] | -0.072 | |
Fatigue ductility coefficient, % | ε'f | 0.44 |
Fatigue ductility exponent | c | -0.82 |
c[Morrow] | -0.70 | |
c [Tomkins] | -0.86 |
Fig. 8. Cyclic stress-strain curve (CSSC) for the as-cast Ti2AlNb-based alloy, where the corresponding monotonic stress-strain curve is also potted for comparison.
Fig. 10. (a) Total strain energy density of the as-cast Ti2AlNb-based alloy versus total strain amplitude, and (b) the predicted fatigue life based on a combined (or weighted) total strain energy density approach.
Fig. 11. SEM micrographs of the as-cast Ti2AlNb-based alloy tested at a strain amplitude of (a, b) 0.4% and (c, d) 1.0%, respectively, where (a) and (c) show an overall view of fracture surfaces of the specimens fatigued at 0.4% and 1.0%, respectively, while (b) and (d) show a magnified view of the surface surfaces near the crack initiation site.
[1] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362(2018). |
[2] |
T.M. Pollock, Nat. Mater. 15(2016) 809-815.
DOI URL PMID |
[3] |
M. Schutze, Nat. Mater. 15(2016) 823-824.
DOI URL PMID |
[4] |
G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, et al., Nat.Mater. 15(2016) 876-881.
DOI URL PMID |
[5] | X. Jiao, D. Wang, J. Yang, Z. Liu, G. Liu, J. Alloys. Compd. 789(2019) 639-646. |
[6] |
B. Wu, M. Zinkevich, F. Aldinger, M. Chu, J. Shen, Intermetallics 16 (2016) 42-51.
DOI URL |
[7] | Z. Wu, R. Hu, T. Zhang, H. Zhou, H. Kou, J. Li, Mater. Sci. Eng. A. 666(2016) 297-304. |
[8] |
B. Shao, Y. Zong, D. Wen, Y. Tian, D. Shan, Mater. Charact. 114(2016) 75-78.
DOI URL |
[9] |
G. Ge, L. Zhang, J. Xin, J. Lin, M. Aindow, L. Zhang, Sci. Rep. 8(2018) 1-9.
DOI URL PMID |
[10] |
B. Shao, D. Shan, B. Guo, Y. Zong, Int. J. Plast. 113(2019) 18-34.
DOI URL |
[11] |
S.J. Qu, A.H. Feng, M.R. Shagiev, H. Xie, B.B. Li, J. Shen, Lett Mater. 8(2018) 567-571.
DOI URL |
[12] | J. Wu, R. Guo, L. Xu, Z. Lu, Y. Cui, R. Yang, J. Mater. Sci. Technol. 33(2017) 172-178. |
[13] | J. Zhang, J. Liu, D. Xu, J. Wu, L. Xu, R. Yang, J. Mater. Sci. Technol. (2019). |
[14] | J. Wu, L. Xu, Z. Lu, B. Lu, Y. Cui, R. Yang, J. Mater. Sci. Technol. 31(2015) 1251-1257. |
[15] | D. Banerjee, A.K. Gogia, T.K. Nandi, V.A. Joshi, Acta Metall. 36(1988) 871-882. |
[16] | Y. Wu, H. Kou, Z. Wu, B. Tang, J. Li, J. Alloys. Compd. 749(2018) 844-852. |
[17] | C.J. Boehlert, D.B. Miracle, Metall. Mater. Trans. A. 30(1999) 2349-2367. |
[18] | J.M. Xiang, G.B. Mi, S.J. Qu, X. Huang, Z. Chen, A.H. Feng, et al. Sci. Rep. 8(2018). |
[19] |
L.A. Bendersky, A. Roytburd, W.J. Boettinger, Acta. Metall. Mater. 42(1994) 2323-2335.
DOI URL |
[20] |
D. Li, S.L. Wright, C.J. Boehlert, Scr. Mater. 51(2004) 545-550.
DOI URL |
[21] | Y. Zheng, W. Zeng, D. Li, J. Xu, X. Ma, X. Liang, et al., Mater.Des. 158(2018) 46-61. |
[22] | W. Wang, W. Zeng, Y. Sun, H. Zhou, X. Liang, Materials (Basel). 11(2018) 1244. |
[23] | W. Wang, W. Zeng, D. Li, B. Zhu, Y. Zheng, X. Liang, Mater. Sci. Eng. A. 662(2016) 120-128. |
[24] | B. Wu, J. Shen, M. Chu, S. Shang, Z. Zhang, D. Peng, et al., Intermetallics 10 (2002) 979-984. |
[25] | T.K. Nandy, D. Banerjee, Intermetallics 8 (2000) 1269-1282. |
[26] | Y. Mao, S.Q. Li, J.W. Zhang, J.H. Peng, D.X. Zou, Z.Y. Zhong, Intermetallics 8 (2000) 659-662. |
[27] | H.C. Fu, J.C. Huang, T.D. Wang, C.C. Bampton, Acta Mater. 46(1988) 465-479. |
[28] | F. Popille, J. Douin, Philos. Mag. A. 73(1996) 1401-1418. |
[29] | F. Popille, J. Douin, J. Phys. IV. 6(1996) 211-216. |
[30] | S.J. Qu, S.Q. Tang, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Acta. Mater. 148(2018) 300-310. |
[31] | J.F. Hou, B.J. Wicks, R.A. Antoniou, Eng. Fail. Anal. 9(2002) 201-211. |
[32] | M. Park, Y.H. Hwang, Y.S. Choi, T.G. Kim, Eng. Fail. Anal. 9(2002) 593-601. |
[33] | L. Witek, Eng. Fail. Anal. 13(2006) 9-17. |
[34] | S.Y. Oakley, D. Nowell, Int. J. Fatigue 29 (2017) 69-80. |
[35] |
K. Yang, C. He, Q. Huang, Z.Y. Huang, C. Wang, Q.Y. Wang, Y.J. Liu, B. Zhong, Int. J. Fatigue 99 (2017) 35-43.
DOI URL |
[36] | L. Han, D.W. Huang, X.J. Yan, C. Chen, X.Y. Zhang, M.J. Qi, Int. J. Fatigue 127 (2019) 120-130. |
[37] | A. Fatemi, R. Molaei, J. Simsiriwong, N. Sanaei, J. Pegues, B. Torries, et al., Fatigue Fract.Eng. Mater. Struct. 42(2019) 991-1009. |
[38] | P. Kumar, U. Ramamurty, Acta Mater. 169(2019) 45-59. |
[39] | A.H. Chern, P. Nandwana, T. Yuan, M.M. Kirka, R.R. Dehoff, P.K. Liaw, et al., Int. J. Fatigue 119 (2019) 173-184. |
[40] | Y. Mine, S. Katashima, R. Ding, P. Bowen, K. Takashima, Scr. Mater. 165(2019) 107-111. |
[41] | Y.J. Liu, H.L. Wang, S.J. Li, S.G. Wang, W.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.C. Zhang, Acta Mater. 126(2017) 58-66. |
[42] | ASTM International, Annu. B ASTM Stand 96 (2004) 1-16. |
[43] | K. Hu, J. Huang, Z. Wei, Q. Peng, Z. Xie, B. Sa, et al.,Phys. Status Solidi B 254 (2017), 1600634. |
[44] | A. Pathak, A.K. Singh, Solid State Commun. 204(2015) 9-15. |
[45] | B. Mozer, A. Bendersky, W.J. Boettinger, Scr Metall Mater. 24(1990) 2363-2368. |
[46] |
S.Q. Tang, S.J. Qu, A.H. Feng, C. Feng, J. Shen, D.L. Chen, Sci. Rep. 7(2017) 1-8.
DOI URL PMID |
[47] | A.K. Singh, T.K. Nandy, D. Mukherjee, D. Banerjee, Philos. Mag. Abingdon (Abingdon) 69(1994) 701-715. |
[48] | D. Banerjee, Prog. Mater. Sci. 42(1997) 135-158. |
[49] | F.A. Sadi, C. Servant, Mater. Sci. Eng. A. 346(2003) 19-28. |
[50] | N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Scr. Mater. 57(2007) 1004-1007. |
[51] | S. Begum, D.L. Chen, S. Xu, A.A. Luo, Metall. Mater. Trans. A. 39(2008) 3014-3026. |
[52] | S. Begum, D.L. Chen, S. Xu, A.A. Luo, Int. J. Fatigue 31 (2009) 726-735. |
[53] | X.Z. Lin, D.L. Chen, Mater. Sci. Eng. A. 496(2008) 106-113. |
[54] | F.A. Mirza, K. Wang, S.D. Bhole, J. Friedman, D.L. Chen, D.R. Ni, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A. 661(2016) 115-125. |
[55] | S.M. Yin, S.X. Li, J. Mater. Sci. Technol. 29(2013) 775-780. |
[56] | D. Sarker, J. Friedman, D.L. Chen, J. Mater. Sci. Technol. 31(2015) 264-268. |
[57] | K. Hazeli, H. Askari, J. Cuadra, F. Streller, R.W. Carpick, H.M. Zbib, A. Kontsos, Int. J. Plast. 68(2015) 55-76. |
[58] | Z. Zhao, J. Chen, S. Guo, H. Tan, X. Lin, W. Huang, J. Mater. Sci. Technol. 33(2017) 675-681. |
[59] | C. Liu, D. Liu, X. Zhang, D. Liu, A. Ma, N. Ao, X. Xu, J. Mater. Sci. Technol. 35(2019) 1555-1562. |
[60] | Y. Ma, S.S. Youssef, X. Feng, H. Wang, S. Huang, J. Qiu, J. Lei, R. Yang, J. Mater. Sci. Technol. 34(2018) 2107-2115. |
[61] | C.K. Yan, A.H. Feng, S.J. Qu, G.J. Cao, J.L. Sun, J. Shen, D.L. Chen, Acta Mater. 154(2018) 311-324. |
[62] | K. Yamaguchi, M. Shimodaira, Tetsu-to-Hagane. 78(1992) 134-140. |
[63] | K.B.S. Rao, Sadhana 28 (2007) 695-708. |
[64] | T. Kruml, K. Obrtlík, Int. J. Fatigue 65 (2014) 28-32. |
[65] |
M.W. Rackel, A. Stark, H. Gabrisch, N. Schell, A. Schreyer, F. Pyczak, Acta Mater. 121(2016) 343-351.
DOI URL |
[66] | B. Tomkins, Philos Mag. 18(1968) 1041-1066. |
[67] | A. Gryguc, S.B. Behravesh, S.K. Shaha, H. Jahed, M. Wells, B. Williams, et al., Int. J. Fatigue 116 (2018) 429-438. |
[68] | S.H. Park, S.G. Hong, B.H. Lee, W. Bang, C.S. Lee, Int. J. Fatigue 32 (2010) 1835-1842. |
[69] | J. Dallmeier, O. Huber, H. Saage, K. Eigenfeld, Mater. Des. 70(2015) 10-30. |
[70] |
S.M.A.K. Mohammed, D.J. Li, X.Q. Zeng, D.L. Chen, Int. J. Fatigue 125 (2019) 1-10.
DOI URL |
[71] |
D.L. Chen, M.C. Chaturvedi, Metal Mater Trans A. 31(2000) 1531-1541.
DOI URL |
[72] | C. Busse, F. Palmert, P. Wawrzynek, B. Sjödin, D. Gustafsson, D. Leidermark, FATIGUE2018, MATEC Web of Conferences (2018), 165(2018) 13012. |
[73] |
Y.Y. Zhang, H.J. Shi, J.L. Gu, C.P. Li, K. Kadau, O. Luesebrink, Theor. Appl. Fract. Mec. 69(2014) 80-89.
DOI URL |
[74] | Y. Mine, S. Ando, K. Takashima, Mater. Sci. Eng. A 528 (2011) 7570-7578. |
[75] |
X.Y. Chen, J.C. Wang, Y.K. Gao, A.H. Feng, Int. J. Fatigue 127 (2019) 53-57.
DOI URL |
[76] | C. Laird, G.C. Smith, Philos Mag. 7(1962) 847-857. |
[77] | T.K. Nandy, D. Banerjee, Intermetallics 8 (2000) 915-928. |
[1] | Haoze Li, Ming Gao, Min Li, Yingche Ma, Kui Liu. Microstructural evolution and tensile property of 1Cr15Ni36W3Ti superalloy during thermal exposure [J]. J. Mater. Sci. Technol., 2021, 73(0): 193-204. |
[2] | Young-Kyun Kim, Kyu-Sik Kim, Young-Beum Song, Jung Hyo Park, Kee-Ahn Lee. 2.47 GPa grade ultra-strong 15Co-12Ni secondary hardening steel with superior ductility and fracture toughness [J]. J. Mater. Sci. Technol., 2021, 66(0): 36-45. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | Kunlei Hou, Min Wang, Meiqiong Ou, Haoze Li, Xianchao Hao, Yingche Ma, Kui Liu. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new Ni-base superalloy during aging at 800 °C [J]. J. Mater. Sci. Technol., 2021, 68(0): 40-52. |
[5] | Hao Li, Qinghui Zeng, Pengfei Yang, Qi Sun, Jianmin Wang, Jian Tu, Minhao Zhu. Towards understanding twinning behavior near fracture surface in magnesium [J]. J. Mater. Sci. Technol., 2020, 43(0): 230-237. |
[6] | Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 75-84. |
[7] | Yuan Zhang, Guoqi Tan, Da Jiao, Jian Zhang, Shaogang Wang, Feng Liu, Zengqian Liu, Longchao Zhuo, Zhefeng Zhang, Sylvain Deville, Robert O. Ritchie. Ice-templated porous tungsten and tungsten carbide inspired by natural wood [J]. J. Mater. Sci. Technol., 2020, 45(0): 187-197. |
[8] | Huan Liu, Chao Sun, Ce Wang, Yuhua Li, Jing Bai, Feng Xue, Aibin Ma, Jinghua Jiang. Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles [J]. J. Mater. Sci. Technol., 2020, 59(0): 61-71. |
[9] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
[10] | Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study [J]. J. Mater. Sci. Technol., 2020, 46(0): 168-176. |
[11] | Xiaogang Li, Kejian Li, Shanlin Li, Yao Wu, Zhipeng Cai, Jiluan Pan. Microstructure and high temperature fracture toughness of NG-TIG welded Inconel 617B superalloy [J]. J. Mater. Sci. Technol., 2020, 39(0): 173-182. |
[12] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
[13] | X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 54-62. |
[14] | Wen-Wen Li, Bo Chen, Hua-Ping Xiong, Wen-Jiang Zou, Hai-Shui Ren. Joining of Cf/SiC composite to GH783 superalloy with NiPdPtAu-Cr filler alloy and a Mo interlayer [J]. J. Mater. Sci. Technol., 2019, 35(9): 2099-2106. |
[15] | Si-Mian Liu, Shi-Hao Li, Wei-Zhong Han. Effect of ordered helium bubbles on deformation and fracture behavior of α-Zr [J]. J. Mater. Sci. Technol., 2019, 35(7): 1466-1472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||