J. Mater. Sci. Technol. ›› 2020, Vol. 44: 121-132.DOI: 10.1016/j.jmst.2019.09.043
• Research Article • Previous Articles Next Articles
Lu Shenab, Yong Lib, Wenjie Zhaoa*(), Kui Wangb*(
), Xiaojing Cia, Yangmin Wua, Gang Liua, Chao Liuc, Zhiwen Fangc
Received:
2019-07-04
Revised:
2019-09-23
Accepted:
2019-09-27
Published:
2020-05-01
Online:
2020-05-21
Contact:
Wenjie Zhao,Kui Wang
Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating[J]. J. Mater. Sci. Technol., 2020, 44: 121-132.
Sample names | Chemical composition (wt.%) | ||
---|---|---|---|
C | F | O | |
rGO | 88.84 | - | 11.16 |
FG-1 | 77.91 | 12.56 | 9.52 |
FG-2 | 62.11 | 33.98 | 3.91 |
FG-3 | 52.67 | 43.36 | 3.97 |
Table 1 Chemical composition of rGO, FG-1, FG-2 and FG-3.
Sample names | Chemical composition (wt.%) | ||
---|---|---|---|
C | F | O | |
rGO | 88.84 | - | 11.16 |
FG-1 | 77.91 | 12.56 | 9.52 |
FG-2 | 62.11 | 33.98 | 3.91 |
FG-3 | 52.67 | 43.36 | 3.97 |
Fig. 7. EIS results of the steels coated with different coatings. (a1-c1) bland EP, (a2-c2) EP/rGO, (a3-c3) EP/FG-1, (a4-c4) EP/FG-2 and (a5-c5) EP/FG-3.
Fig. 8. (a) Equivalent electric circuits models (Model I, Model II and Model III) of coatings. (b) Cc results as a function of immersion time of the five coatings. (c) The coating resistance Rc as a function of the immersion of the five coatings.
Fig. 9. Optical images of salt spray tests steel substrates coated by blank EP, EP/rGO, EP/FG-1, EP/FG-2 and EP/FG-3 coatings after 48, 114, 240 and 336 h (Test length of the artificial scribes was 2 cm).
Samples | Blistering state (336 h) | Corrosion behavior at scribes |
---|---|---|
Blank EP | Lots of blisters | Obvious rusting after 114 h |
EP/rGO | Lots of blisters | Obvious rusting after 114 h |
EP/FG-1 | Some blisters | Obvious rusting after 240 h |
EP/FG-2 | Without blisters | Obvious rusting after 240 h |
EP/FG-3 | Without blisters | Obvious rusting after 240 h |
Table 2 Results of salt spray tests.
Samples | Blistering state (336 h) | Corrosion behavior at scribes |
---|---|---|
Blank EP | Lots of blisters | Obvious rusting after 114 h |
EP/rGO | Lots of blisters | Obvious rusting after 114 h |
EP/FG-1 | Some blisters | Obvious rusting after 240 h |
EP/FG-2 | Without blisters | Obvious rusting after 240 h |
EP/FG-3 | Without blisters | Obvious rusting after 240 h |
Fig. 11. Micrographs of coating-exfoliated steel surfaces after 90 days immersion in 3.5 wt.% NaCl solution: (a1) blank EP, (b1) EP/rGO, (c1) EP/FG-1, (d1) EP/FG-2 and (e1) EP/FG-3. SEM images of coating-exfoliated steel surfaces coated by blank EP (a2), EP/rGO (b2), EP/FG-1 (c2), EP/FG-2 (d2) and EP/FG-3 (e2). (a3-e3) EDS results corresponded to areas selected in (a2-e2).
Fig. 13. Schematic of corrosion protection mechanism of EP coating (a), composite coatings enhanced via rGO or FG (b); (c) Coating was exaggerated to clearly show the electron transfer in EP/rGO coating; (d) Coating was exaggerated to clearly show the electron transfer in EP/FG coatings.
[1] |
S. Lyon, Nature 427 (2004) 406-407.
DOI URL PMID |
[2] |
G. Cui, Z. Bi, R. Zhang, J. Liu, X. Yu, Z. Li, Chem. Eng. J. 373(2019) 104-121.
DOI URL |
[3] |
S. Böhm, Nat. Nanotechnol. 9(2014) 741-742.
DOI URL PMID |
[4] |
R.K.S. Raman, A. Tiwari, JOM 66 (2014) 637-642.
DOI URL |
[5] |
B. Zhang, Y.Z. Di, S.Y. Zhu, H.Y. Wang, G.Z. Cao, H.Y. Yao, Y. Song, K.X. Shi, Y. Tian, S.W. Guan, J. Appl. Polym. Sci. 136(2019) 47942.
DOI URL |
[6] |
S. Liu, L. Gu, H.C. Zhao, J.M. Chen, H.B. Yu, J. Mater. Sci. Technol. 32(2016) 425-431.
DOI URL |
[7] |
C.H. Chang, T.C. Huang, C.W. Peng, T.C. Yeh, H.I. Lu, W.I. Hung, C.J. Weng, T.I. Yang, J.M. Yeh, Carbon 50 (2012) 5044-5051.
DOI URL |
[8] |
R. Maurya, A.R. Siddiqui, P.K. Katiyar, K. Balani, J. Mater. Sci. Technol. 35(2019) 1767-1778.
DOI URL |
[9] |
L. Gu, S. Liu, H. Zhao, H. Yu, ACS Appl. Mater. Interf. 7(2015)17641-17648.
DOI URL PMID |
[10] |
L. Shen, Y. Li, W. Zhao, L. Miao, W. Xie, H. Lu, K. Wang, ACS Appl. Nano Mater. 2(2019) 180-190.
DOI URL |
[11] |
T. Yang, Y. Cui, Z. Li, H. Zeng, S. Luo, W. Li, J. Hazard. Mater. 357(2018) 475-482.
DOI URL PMID |
[12] |
N. Parhizkar, B. Ramezanzadeh, T. Shahrabi, J. Ind. Eng. Chem. 64(2018) 402-419.
DOI URL |
[13] |
Y. Wu, W. Zhao, X. Zhu, Q. Xue, Carbon 153 (2019) 95-99.
DOI URL |
[14] |
H.L. Ming, J.Q. Wang, Z.M. Zhang, S.Y. Wang, E.H. Han, W. Ke, J. Mater. Sci. Technol. 30(2014) 1084-1087.
DOI URL |
[15] |
S. Chen, L. Brown, M. Levendorf, W. Cai, S.Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, R.S. Ruoff, ACS Nano 5 (2011) 1321-1327.
DOI URL PMID |
[16] |
Y. Dong, Q. Liu, Q. Zhou, Corros. Sci. 90(2015) 69-75.
DOI URL |
[17] |
P.K. Nayak, C.J. Hsu, S.C. Wang, J.C. Sung, J.L. Huang, Thin Solid Films 529 (2013) 312-316.
DOI URL |
[18] |
Y. Wu, X. Zhu, W. Zhao, Y. Wang, C. Wang, Q. Xue, J. Alloys Compd. 777(2019) 135-144.
DOI URL |
[19] |
M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, ACS Nano 7 (2013) 5763-5768.
DOI URL PMID |
[20] |
F. Zhou, Z. Li, G.J. Shenoy, L. Li, H. Liu, ACS Nano 7 (2013) 6939-6947.
DOI URL PMID |
[21] |
W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, Carbon 79 (2014) 605-614.
DOI URL |
[22] |
W. Sun, L. Wang, T. Wu, M. Wang, Z. Yang, Y. Pan, G. Liu, Chem. Mater. 27(2015) 2367-2373.
DOI URL |
[23] |
W. Sun, L. Wang, T. Wu, Y. Pan, G. Liu, J. Mater. Chem. A 3 (2015) 16843-16848.
DOI URL |
[24] |
M. Pumera, C.H.A. Wong, Chem. Soc. Rev. 42(2013) 5987-5995.
DOI URL PMID |
[25] |
J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, ACS Catal. 2(2012) 622-631.
DOI URL PMID |
[26] |
S. Ren, M. Cui, W. Li, J. Pu, Q. Xue, L. Wang, J. Mater. Chem. A 6 (2018) 24136-24148.
DOI URL |
[27] |
Z. Yang, W. Sun, L. Wang, S. Li, T. Zhu, G. Liu, Corros. Sci. 103(2016) 312-318.
DOI URL |
[28] |
Z. Yang, L. Wang, W. Sun, S. Li, T. Zhu, W. Liu, G. Liu, Appl. Surf. Sci. 401(2017) 146-155.
DOI URL |
[29] |
M. Zhu, X. Xie, Y. Guo, P. Chen, X. Ou, G. Yu, M. Liu, Phys. Chem. Chem. Phys. 15(2013) 20992-21000.
DOI URL PMID |
[30] |
R. Zboril, F. Karlicky, A.B. Bourlinos, T.A. Steriotis, A.K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, M. Otyepka, Small 6 (2010) 2885-2891.
DOI URL PMID |
[31] |
A.B. Bourlinos, K. Safarova, K. Siskova, R. Zboril, Carbon 50 (2012) 1425-1428.
DOI URL |
[32] |
M.P. Lavin-Lopez, A. Paton-Carrero, L. Sanchez-Silva, J.L. Valverde, A. Romero, Adv. Powder Technol. 28(2017) 3195-3203.
DOI URL |
[33] |
Y.S. Lee, T.H. Cho, B.K. Lee, J.S. Rho, K.H. An, Y.H. Lee, J. Fluorine Chem. 120(2003) 99-104.
DOI URL |
[34] |
A.H. Lu, G.P. Hao, Q. Sun, Angew. Chem. Int. Ed. 50(2011) 9023-9025.
DOI URL PMID |
[35] |
L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, J. Electron. Spectrosc. 195(2014) 145-154.
DOI URL |
[36] |
B.E. Warren, Phys. Rev. 59(1941) 693-698.
DOI URL |
[37] |
E. Husain, T.N. Narayanan, J.J. Taha-Tijerina, S. Vinod, R. Vajtai, P.M. Ajayan, ACS Appl. Mater. Interf. 5(2013) 4129-4135.
DOI URL PMID |
[38] |
M. Conradi, A. Kocijan, D. Kek-Merl, M. Zorko, I. Verpoest, Appl. Surf. Sci. 292(2014) 432-437.
DOI URL |
[39] |
Y. Zhang, Y. Shao, T. Zhang, G. Meng, F. Wang, Corros. Sci. 53(2011) 3747-3755.
DOI URL |
[40] | Y. Zhang, Y. Shao, X. Liu, C. Shi, Y. Wang, G. Meng, X. Zeng, Y. Yang, Prog. Org. Coat. 111(2017) 240-247. |
[41] |
F. Froment, A. Tournie, P. Colomban, J. Raman Spectrosc. 39(2008) 560-568.
DOI URL |
[42] |
D. Bersani, P.P. Lottici, A. Montenero, J. Raman Spectrosc. 30(1999) 355-360.
DOI URL |
[43] |
T. Misawa, K. Hashimoto, S. Shimodaira, Corros. Sci. 14 (2) (1974) 131-149.
DOI URL |
[44] |
P. Dillmann, F. Mazaudier, S. Hoerle, Corros. Sci. 46 (6) (2004) 1401-1429.
DOI URL |
[1] | Nan Sun, Pei-Long Li, Ming Wen, Jiang-Feng Song, Zhi Zhang, Wen-Bin Yang, Yuan-Lin Zhou, De-Li Luo, Quan-Ping Zhang. Insights into heat management of hydrogen adsorption for improved hydrogen isotope separation of porous materials [J]. J. Mater. Sci. Technol., 2021, 76(0): 200-206. |
[2] | Yabin Hao, Minghe Fang, Chuan Xu, Zhe Ying, Han Wang, Rui Zhang, Hui-Ming Cheng, You Zeng. A graphene-laminated electrode with high glucose oxidase loading for highly-sensitive glucose detection [J]. J. Mater. Sci. Technol., 2021, 66(0): 57-63. |
[3] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[4] | Hanxun Wang, Baichun Hu, Zisen Gao, Fengjiao Zhang, Jian Wang. Emerging role of graphene oxide as sorbent for pesticides adsorption: Experimental observations analyzed by molecular modeling [J]. J. Mater. Sci. Technol., 2021, 63(0): 192-202. |
[5] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[6] | Zuoting Yang, Ke Yang, Yuhong Cui, Tariq Shah, Mudasir Ahmad, Qiuyu Zhang, Baoliang Zhang. Synthesis of surface imprinted polymers based on wrinkled flower-like magnetic graphene microspheres with favorable recognition ability for BSA [J]. J. Mater. Sci. Technol., 2021, 74(0): 203-215. |
[7] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[8] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[9] | Hao Yu, Yi He, Guoqing Xiao, Yi Fan, Jing Ma, Yixuan Gao, Ruitong Hou, Jingyu Chen. Weak-reduction graphene oxide membrane for improving water purification performance [J]. J. Mater. Sci. Technol., 2020, 39(0): 106-112. |
[10] | Jing Liang, Cuili Xiang, Yongjin Zou, Xuebu Hu, Hailiang Chu, Shujun Qiu, Fen Xu, Lixian Sun. Spacing graphene and Ni-Co layered double hydroxides with polypyrrole for high-performance supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 190-197. |
[11] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[12] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[13] | Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection [J]. J. Mater. Sci. Technol., 2020, 37(0): 55-63. |
[14] | Shijing Wei, Yabin Hao, Zhe Ying, Chuan Xu, Qinwei Wei, Sen Xue, Hui-Ming Cheng, Wencai Ren, Lai-Peng Ma, You Zeng. Transfer-free CVD graphene for highly sensitive glucose sensors [J]. J. Mater. Sci. Technol., 2020, 37(0): 71-76. |
[15] | Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity [J]. J. Mater. Sci. Technol., 2020, 58(0): 16-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||