J. Mater. Sci. Technol. ›› 2020, Vol. 43: 32-39.DOI: 10.1016/j.jmst.2020.01.020
• Research Article • Previous Articles Next Articles
Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang*()
Received:
2019-08-02
Revised:
2019-09-06
Accepted:
2019-09-23
Published:
2020-04-15
Online:
2020-04-26
Contact:
Zhang Wei
Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance[J]. J. Mater. Sci. Technol., 2020, 43: 32-39.
Fig. 1. XRD patterns of as-cast FeNiCrMo(NM) HEA rods with diameters of 1.0-2.0 mm (a), and HRTEM image inset with corresponding SAED pattern of as-cast Fe35Ni20Cr20Mo5(NM)20 HEA rod with a diameter of 2.0 mm (b).
Fig. 3. DSC (a) and DTA (b) curves of FeNiCrMo(NM) high-entropy metallic glasses. The results of Fe62Ni8Cr7Mo3(NM)20 metallic glass are shown for comparison.
Alloys | Tg (K) | Tx1 (K) | ΔTx (K) | Tp1 (K) | 2ΔTp1-x1 (K) | Tl (K) | Trg | γ | dc (mm) | ΔSconf |
---|---|---|---|---|---|---|---|---|---|---|
Fe35Ni20Cr20Mo5(NM)20 | 722 | 784 | 62 | 793 | 18 | 1350 | 0.535 | 0.378 | 2.0 | 1.67R |
Fe30Ni20Cr25Mo5(NM)20 | 734 | 803 | 69 | 813 | 20 | 1396 | 0.526 | 0.377 | 1.5 | 1.69R |
Fe25Ni20Cr30Mo5(NM)20 | 746 | 797 | 51 | 811 | 28 | 1475 | 0.506 | 0.359 | 1.0 | 1.69R |
Fe25Ni20Cr25Mo10(NM)20 | 752 | 807 | 55 | 824 | 34 | 1446 | 0.520 | 0.367 | 1.0 | 1.76R |
Fe20Ni20Cr25Mo15(NM)20 | 800 | 852 | 52 | 871 | 38 | 1489 | 0.537 | 0.372 | 1.0 | 1.79R |
Fe62Ni8Cr7Mo3(NM)20 [ | 705 | 756 | 51 | 762 | 12 | 1323 | 0.533 | 0.373 | 2.0 | 1.30R |
Table 1 Thermal properties (Tg, Tx1, ΔTx, Tp1, 2ΔTp1-x1, Tl, Trg and γ), critical diameter (dc), and configurational entropy (ΔSconf) of FeNiCrMo(NM) high-entropy metallic glasses. The results of Fe62Ni8Cr7Mo3(NM)20 alloy are shown for comparison. (NM) in alloy compositions represents (P0.6C0.2B0.2).
Alloys | Tg (K) | Tx1 (K) | ΔTx (K) | Tp1 (K) | 2ΔTp1-x1 (K) | Tl (K) | Trg | γ | dc (mm) | ΔSconf |
---|---|---|---|---|---|---|---|---|---|---|
Fe35Ni20Cr20Mo5(NM)20 | 722 | 784 | 62 | 793 | 18 | 1350 | 0.535 | 0.378 | 2.0 | 1.67R |
Fe30Ni20Cr25Mo5(NM)20 | 734 | 803 | 69 | 813 | 20 | 1396 | 0.526 | 0.377 | 1.5 | 1.69R |
Fe25Ni20Cr30Mo5(NM)20 | 746 | 797 | 51 | 811 | 28 | 1475 | 0.506 | 0.359 | 1.0 | 1.69R |
Fe25Ni20Cr25Mo10(NM)20 | 752 | 807 | 55 | 824 | 34 | 1446 | 0.520 | 0.367 | 1.0 | 1.76R |
Fe20Ni20Cr25Mo15(NM)20 | 800 | 852 | 52 | 871 | 38 | 1489 | 0.537 | 0.372 | 1.0 | 1.79R |
Fe62Ni8Cr7Mo3(NM)20 [ | 705 | 756 | 51 | 762 | 12 | 1323 | 0.533 | 0.373 | 2.0 | 1.30R |
Fig. 4. XRD patterns of Fe25Ni20Cr25Mo10(NM)20 (a) and Fe62Ni8Cr7Mo3(NM)20 (b) metallic glasses after isochronally annealing at different temperatures. Inset in (a) shows the annealing temperatures denoted in the DSC curves.
Fig. 5. Bright-field TEM images inset with corresponding SAED patterns and HRTEM images of Fe25Ni20Cr25Mo10(NM)20 (a, b) and Fe62Ni8Cr7Mo3(NM)20 (c, d) metallic glasses after isochronally annealing at 842 and 770 K, respectively.
Fig. 6. Potentiodynamic polarization curves of FeNiCrMo(NM) HE-BMGs in 0.5 M H2SO4 (a), 3 mass% NaCl (b), and 1 M HCl (c) solutions open to air at 298 K. The curves of SUS316 L and SAM2X5 are shown for comparison.
Alloys | In 0.5 M H2SO4 | In 3 mass% NaCl | In 1 M HCl | σf (GPa) | Vickers Hardness | |||
---|---|---|---|---|---|---|---|---|
Ecorr (mV) | Icorr (A/cm2) | Ecorr (mV) | Icorr (A/cm2) | Ecorr (mV) | Icorr (A/cm2) | |||
Fe35Ni20Cr20Mo5(NM)20 | -36 | 1.0 × 10-7 | -19 | 7.0 × 10-8 | 157 | 7.0 × 10-8 | 3.3 | 968 |
Fe30Ni20Cr25Mo5(NM)20 | 98 | 3.9 × 10-8 | -6 | 7.9 × 10-8 | 167 | 1.6 × 10-8 | 3.3 | 974 |
Fe25Ni20Cr30Mo5(NM)20 | 155 | 3.7 × 10-8 | 15 | 2.7 × 10-8 | 176 | 1.4 × 10-8 | 3.3 | 978 |
Fe25Ni20Cr25Mo10(NM)20 | 147 | 5.8 × 10-9 | 38 | 6.0 × 10-9 | 193 | 9.1 × 10-9 | 3.4 | 981 |
Fe20Ni20Cr25Mo15(NM)20 | 198 | 2.3 × 10-9 | 77 | 3.8 × 10-9 | 226 | 7.3 × 10-9 | 3.4 | 1107 |
Fe55Ni15Cr7Mo3(NM)20 [ | 183 | 4.8 × 10-7 | -23 | 8.3 × 10-8 | 51 | 4.1 × 10-7 | 3.1 | 923 |
Table 2 Corrosion potential (Ecorr) and corrosion current density (Icorr), fracture strength (σf), and Vickers hardness of FeNiCrMo(NM) HE-BMGs. The results of Fe55Ni15Cr7Mo3(NM)20 alloy are shown for comparison.
Alloys | In 0.5 M H2SO4 | In 3 mass% NaCl | In 1 M HCl | σf (GPa) | Vickers Hardness | |||
---|---|---|---|---|---|---|---|---|
Ecorr (mV) | Icorr (A/cm2) | Ecorr (mV) | Icorr (A/cm2) | Ecorr (mV) | Icorr (A/cm2) | |||
Fe35Ni20Cr20Mo5(NM)20 | -36 | 1.0 × 10-7 | -19 | 7.0 × 10-8 | 157 | 7.0 × 10-8 | 3.3 | 968 |
Fe30Ni20Cr25Mo5(NM)20 | 98 | 3.9 × 10-8 | -6 | 7.9 × 10-8 | 167 | 1.6 × 10-8 | 3.3 | 974 |
Fe25Ni20Cr30Mo5(NM)20 | 155 | 3.7 × 10-8 | 15 | 2.7 × 10-8 | 176 | 1.4 × 10-8 | 3.3 | 978 |
Fe25Ni20Cr25Mo10(NM)20 | 147 | 5.8 × 10-9 | 38 | 6.0 × 10-9 | 193 | 9.1 × 10-9 | 3.4 | 981 |
Fe20Ni20Cr25Mo15(NM)20 | 198 | 2.3 × 10-9 | 77 | 3.8 × 10-9 | 226 | 7.3 × 10-9 | 3.4 | 1107 |
Fe55Ni15Cr7Mo3(NM)20 [ | 183 | 4.8 × 10-7 | -23 | 8.3 × 10-8 | 51 | 4.1 × 10-7 | 3.1 | 923 |
Fig. 7. Compressive stress-strain curves of as-cast Fe35Ni20Cr20Mo5(NM)20 (I) and Fe20Ni20Cr25Mo15(NM)20 (II) HE-BMG rods with a diameter of 1.0 mm (a), and SEM images of lateral (b) and fracture surface morphologies (c) of the cracked Fe35Ni20Cr20Mo5(NM)20 HE-BMG sample.
Fig. 8. Fracture strength (σf) versus primary crystallization temperature (Tx1) of FeNiCrMo(NM) and other typical HE-BMGs [[11], [12], [13], [14], [15], [16], [17], [18], [19],22].
Fig. 9. Kissinger plots of peak temperatures (Tp1) of the primary crystallization process and the corresponding activation energy (Ep1) for Fe25Ni20Cr25Mo10(NM)20 and Fe62Ni8Cr7Mo3(NM)20 metallic glasses, respectively (a), and DTA curves of melting and solidification of the two alloys (b).
Fig. 10. XPS spectra of Fe 2p (a), Ni 2p (b), Cr 2p (c), and Mo 3d (d) detected for passive films on Fe20Ni20Cr25Mo15(NM)20 HE-BMG after air exposure and immersion in 3 mass% NaCl solution open to air for 168 h.
Fig. 11. Normalized fraction of oxidized Fe, Ni, Cr, and Mo in surface films of Fe20Ni20Cr25Mo15(NM)20 HE-BMG polished and exposed to air, and after immersing in 3 mass% NaCl solution open to air for 168 h. The results of Fe55Ni15Cr7Mo3(NM)20 BMG after immersion are shown for comparison.
|
[1] | Jiang Bi, Zhenglong Lei, Yanbin Chen, Xi Chen, Nannan Lu, Ze Tian, Xikun Qin. An additively manufactured Al-14.1Mg-0.47Si-0.31Sc-0.17Zr alloy with high specific strength, good thermal stability and excellent corrosion resistance [J]. J. Mater. Sci. Technol., 2021, 67(0): 23-35. |
[2] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[3] | Qiaoyue Zhang, Shun-Xing Liang, Zhe Jia, Wenchang Zhang, Weimin Wang, Lai-Chang Zhang. Efficient nanostructured heterogeneous catalysts by electrochemical etching of partially crystallized Fe-based metallic glass ribbons [J]. J. Mater. Sci. Technol., 2021, 61(0): 159-168. |
[4] | Xian-Zong Wang, Hong-Qiang Fan, Triratna Muneshwar, Ken Cadien, Jing-Li Luo. Balancing the corrosion resistance and through-plane electrical conductivity of Cr coating via oxygen plasma treatment [J]. J. Mater. Sci. Technol., 2021, 61(0): 75-84. |
[5] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[6] | Sang Won Lee, Gukin Han, Tea-Sung Jun, Sung Hyuk Park. Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 139-149. |
[7] | Fu Zhang, Zhu Ma, Taotao Hu, Rui Liu, Qiaofeng Wu, Yu Yue, Hua Zhang, Zheng Xiao, Meng Zhang, Wenfeng Zhang, Xin Chen, Hua Yu. Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 66(0): 150-156. |
[8] | Binbin Zhang, Weichen Xu, Qingjun Zhu, Baorong Hou. Scalable, fluorine free and hot water repelling superhydrophobic and superoleophobic coating based on functionalized Al2O3 nanoparticles [J]. J. Mater. Sci. Technol., 2021, 66(0): 74-81. |
[9] | L.Y. Zhao, H. Yan, R.S. Chen, En-Hou Han. Orientations of nuclei during static recrystallization in a cold-rolled Mg-Zn-Gd alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 162-167. |
[10] | Yuqiao Dong, Jiaqi Li, Dake Xu, Guangling Song, Dan Liu, Haipeng Wang, M.Saleem Khan, Ke Yang, Fuhui Wang. Investigation of microbial corrosion inhibition of Cu-bearing 316L stainless steel in the presence of acid producing bacterium Acidithiobacillus caldus SM-1 [J]. J. Mater. Sci. Technol., 2021, 64(0): 176-186. |
[11] | Jing Chen, Liang Wu, Xingxing Ding, Qiang Liu, Xu Dai, Jiangfeng Song, Bin Jiang, Andrej Atrens, Fusheng Pan. Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2021, 64(0): 10-20. |
[12] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[13] | Tao Liu, Aina He, Fengyu Kong, Anding Wang, Yaqiang Dong, Hua Zhang, Xinmin Wang, Hongwei Ni, Yong Yang. Heterostructured crystallization mechanism and its effect on enlarging the processing window of Fe-based nanocrystalline alloys [J]. J. Mater. Sci. Technol., 2021, 68(0): 53-60. |
[14] | Hyun Ji Kim, Sang-Cheol Jin, Jae-Gil Jung, Sung Hyuk Park. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg-7Sn-1Al-1Zn alloy during low- and high-temperature extrusions [J]. J. Mater. Sci. Technol., 2021, 71(0): 87-97. |
[15] | Peiru Yang, Chenxi Liu, Qianying Guo, Yongchang Liu. Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy [J]. J. Mater. Sci. Technol., 2021, 72(0): 162-171. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||