J. Mater. Sci. Technol. ›› 2020, Vol. 36: 91-96.DOI: 10.1016/j.jmst.2019.03.018
• Research Article • Previous Articles Next Articles
Ke Yueab, Jianrong Liua*(), Haijun Zhanga, Hui Yuacd, Yuanyuan Songa, Qingmiao Hua, Qingjiang Wanga, Rui Yanga
Received:
2018-09-03
Revised:
2018-12-10
Accepted:
2019-03-04
Published:
2020-01-01
Online:
2020-02-11
Contact:
Liu Jianrong
Ke Yue, Jianrong Liu, Haijun Zhang, Hui Yu, Yuanyuan Song, Qingmiao Hu, Qingjiang Wang, Rui Yang. Precipitates and alloying elements distribution in near α titanium alloy Ti65[J]. J. Mater. Sci. Technol., 2020, 36: 91-96.
Fig. 1. (a) Bimodal microstructure for Ti65 alloy after solution treatment and aging process; (b) the morphology of silicides at α/β interfaces with indexed diffraction spots; (c) the dark field image of α2 phase with the corresponding SAD pattern containing matrix and α2 phase.
Fig. 2. (a) 3D reconstruction of Si atom map with 5 at.% Si isosurface demarcated; (b) one dimension composition profile across the boundary between matrix and silicides, containing Al, Zr, Si, Ti, and Sn elements.
Elements | Ti | Zr | Si | Sn |
---|---|---|---|---|
Composition (at.%) | 36.51 | 28.53 | 28.95 | 2.75 |
Table 1 Atomic percent of alloying elements in silicides (at.%).
Elements | Ti | Zr | Si | Sn |
---|---|---|---|---|
Composition (at.%) | 36.51 | 28.53 | 28.95 | 2.75 |
Fig. 3. (a) 3D reconstruction of alloying elements atom map with 5 at.% isosurface Si map; (b) one dimension composition profile along the cylinder of selected region across the α/β interface. Al, Zr, Sn and W refer to the left Y-axis, other elements to the right.
Composition (at.%) | Al | Zr | Si | Sn | Mo | Nb | Ta | W | C |
---|---|---|---|---|---|---|---|---|---|
αp | 10.31 | 1.26 | 0.46 | 1.45 | 0.09 | 0.18 | 0.02 | 0.21 | 0.21 |
αl | 7.19 | 1.05 | 0.21 | 2.03 | 0.21 | 0.16 | 0.06 | 0.21 | 0.091 |
β | 3.12 | 2.75 | 0.30 | 2.13 | 2.68 | 0.82 | 0.48 | 4.73 | 0.037 |
S2 | 0.74 | 27.76 | 28.72 | 2.33 | 0.36 | 0.42 | 0.09 | 0.31 | 0.015 |
α2 | 14.18 | 1.29 | 0.85 | 1.30 | 0.13 | 0.08 | 0.03 | 0.2 | 0.16 |
Nominal composition | 10.28 | 1.86 | 0.69 | 1.63 | 0.25 | 0.16 | 0.27 | 0.21 | 0.22 |
Table 2 Compositions of alloying elements for selected regions in Ti65 alloy.
Composition (at.%) | Al | Zr | Si | Sn | Mo | Nb | Ta | W | C |
---|---|---|---|---|---|---|---|---|---|
αp | 10.31 | 1.26 | 0.46 | 1.45 | 0.09 | 0.18 | 0.02 | 0.21 | 0.21 |
αl | 7.19 | 1.05 | 0.21 | 2.03 | 0.21 | 0.16 | 0.06 | 0.21 | 0.091 |
β | 3.12 | 2.75 | 0.30 | 2.13 | 2.68 | 0.82 | 0.48 | 4.73 | 0.037 |
S2 | 0.74 | 27.76 | 28.72 | 2.33 | 0.36 | 0.42 | 0.09 | 0.31 | 0.015 |
α2 | 14.18 | 1.29 | 0.85 | 1.30 | 0.13 | 0.08 | 0.03 | 0.2 | 0.16 |
Nominal composition | 10.28 | 1.86 | 0.69 | 1.63 | 0.25 | 0.16 | 0.27 | 0.21 | 0.22 |
Number of valence electrons, Nd | Nd = 2 | Nd = 3 | Nd = 4 | ||
---|---|---|---|---|---|
Alloying elements | Zr | Nb | Ta | Mo | W |
Cβ/Cα | 2.62 | 5.03 | 7.70 | 13.03 | 22.4 |
d(ΔE)/dx* | 0.11 | 0.35 | 0.27 | 0.68 | 0.63 |
Table 3 Concentration ratio (Cβ/Cα) of alloying elements in the α and β phases of Ti65 and the slop of the formation energy difference of alloying elements against the concentration x for binary Ti-X alloys (X=Zr, Nb, Ta, Mo, and W), d(ΔE)/dx.
Number of valence electrons, Nd | Nd = 2 | Nd = 3 | Nd = 4 | ||
---|---|---|---|---|---|
Alloying elements | Zr | Nb | Ta | Mo | W |
Cβ/Cα | 2.62 | 5.03 | 7.70 | 13.03 | 22.4 |
d(ΔE)/dx* | 0.11 | 0.35 | 0.27 | 0.68 | 0.63 |
Fig. 4. (a) 3D reconstruction of Al clusters map; (b) 3D reconstruction of 15 at.% Al isosurface; (c) one dimension composition profile along the cylinder in (b). Al and Ti refer to the left Y-axis, other elements to the right.
|
[1] | Yuankui Cao, Weidong Zhang, Bin Liu, Yong Liu, Meng Du, Ao Fu. Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 66(0): 10-20. |
[2] | Zihong Wang, Xin Lin, Yao Tang, Nan Kang, Xuehao Gao, Shuoqing Shi, Weidong Huang. Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys: columnar-to-equiaxed transition and aging hardening behavior [J]. J. Mater. Sci. Technol., 2021, 69(0): 168-179. |
[3] | X.W. Liu, N. Gao, J. Zheng, Y. Wu, Y.Y. Zhao, Q. Chen, W. Zhou, S.Z. Pu, W.M. Jiang, Z.T. Fan. Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides [J]. J. Mater. Sci. Technol., 2021, 72(0): 29-38. |
[4] | Feng He, Bin Han, Zhongsheng Yang, Da Chen, Guma Yeli, Yang Tong, Daixiu Wei, Junjie Li, Zhijun Wang, Jincheng Wang, Ji-jung Kai. Elemental partitioning as a route to design precipitation-hardened high entropy alloys [J]. J. Mater. Sci. Technol., 2021, 72(0): 52-60. |
[5] | Zhihong Wu, Hongchao Kou, Nana Chen, Zhixin Zhang, Fengming Qiang, Jiangkun Fan, Bin Tang, Jinshan Li. Microstructural influences on the high cycle fatigue life dispersion and damage mechanism in a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 70(0): 12-23. |
[6] | S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, G.H. Fan. Effect of forced-air cooling on the microstructure and age-hardening response of extruded Mg-Gd-Y-Zn-Zr alloy full with LPSO lamella [J]. J. Mater. Sci. Technol., 2021, 73(0): 66-75. |
[7] | Baoxian Su, Binbin Wang, Liangshun Luo, Liang Wang, Yanqing Su, Fuxin Wang, Yanjin Xu, Baoshuai Han, Haiguang Huang, Jingjie Guo, Hengzhi Fu. The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature [J]. J. Mater. Sci. Technol., 2021, 74(0): 143-154. |
[8] | Hai-Le Yan, Hao-Xuan Liu, Ying Zhao, Nan Jia, Jing Bai, Bo Yang, Zongbin Li, Yudong Zhang, Claude Esling, Xiang Zhao, Liang Zuo. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74(0): 27-34. |
[9] | Wei Wu, Yongshan Wei, Hongjiang Chen, Keyan Wei, Zhitong Li, Jianhui He, Libo Deng, Lei Yao, Haitao Yang. In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes [J]. J. Mater. Sci. Technol., 2021, 75(0): 110-117. |
[10] | L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen. A hidden precipitation scenario of the θ′-phase in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 126-138. |
[11] | Yongliang Qi, Tinghui Cao, Hongxiang Zong, Yake Wu, Lin He, Xiangdong Ding, Feng Jiang, Shenbao Jin, Gang Sha, Jun Sun. Enhancement of strength-ductility balance of heavy Ti and Al alloyed FeCoNiCr high-entropy alloys via boron doping [J]. J. Mater. Sci. Technol., 2021, 75(0): 154-163. |
[12] | Longqing Tang, Guowei Bo, Fulin Jiang, Shiwei Xu, Jie Teng, Dingfa Fu, Hui Zhang. Unravelling the precipitation evolutions of AZ80 magnesium alloy during non-isothermal and isothermal processes [J]. J. Mater. Sci. Technol., 2021, 75(0): 184-195. |
[13] | Xinkai Ma, Zhuo Chen, Dongling Zhong, S.N. Luo, Lei Xiao, Wenjie Lu, Shanglin Zhang. Effect of rotationally accelerated shot peening on the microstructure and mechanical behavior of a metastable β titanium alloy [J]. J. Mater. Sci. Technol., 2021, 75(0): 27-38. |
[14] | Jiachen Zhang, Taiwen Huang, Kaili Cao, Jia Chen, Huajing Zong, Dong Wang, Jian Zhang, Jun Zhang, Lin Liu. A correlative multidimensional study of γ′ precipitates with Ta addition in Re-containing Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 75(0): 68-77. |
[15] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||