J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (11): 2435-2446.DOI: 10.1016/j.jmst.2019.07.016
• Orginal Article • Previous Articles Next Articles
Haibin Wangab*(), Mark Geeb, Qingfan Qiua, Hannah Zhangb, Xuemei Liua, Hongbo Niec, Xiaoyan Songa*(
), Zuoren Niea
Received:
2019-05-15
Revised:
2019-06-10
Accepted:
2019-06-11
Online:
2019-11-05
Published:
2019-10-21
Contact:
Wang Haibin,Song Xiaoyan
Haibin Wang, Mark Gee, Qingfan Qiu, Hannah Zhang, Xuemei Liu, Hongbo Nie, Xiaoyan Song, Zuoren Nie. Grain size effect on wear resistance of WC-Co cemented carbides under different tribological conditions[J]. J. Mater. Sci. Technol., 2019, 35(11): 2435-2446.
Powder | Composition (wt%) | Particle size of raw powders (μm) | Milling time (h) | |||
---|---|---|---|---|---|---|
WC | Co | VC | Cr3C2 | |||
S1 | WC-8Co | 3 | 10 | - | - | |
S2 | WC-8Co | 3 | 30 | - | - | |
S3 | WC-8Co- 0.5VC-0.5Cr3C2 | 3 | 30 | 0.5 | 0.5 | |
S4 | WC-8Co- 0.5VC-0.5Cr3C2 | 0.8 | 30 | 0.5 | 0.5 |
Table 1 Preparation details of the WC-Co powders.
Powder | Composition (wt%) | Particle size of raw powders (μm) | Milling time (h) | |||
---|---|---|---|---|---|---|
WC | Co | VC | Cr3C2 | |||
S1 | WC-8Co | 3 | 10 | - | - | |
S2 | WC-8Co | 3 | 30 | - | - | |
S3 | WC-8Co- 0.5VC-0.5Cr3C2 | 3 | 30 | 0.5 | 0.5 | |
S4 | WC-8Co- 0.5VC-0.5Cr3C2 | 0.8 | 30 | 0.5 | 0.5 |
Parameter | Microabrasion | Dry sliding wear |
---|---|---|
Normal load (N) | 0.2 | 70 |
Wear counterpart | Stainless steel ball, Φ25 | Si3N4 ball, Φ5 |
Wear time (min) | 30 | 30 |
Wear distance (m) | 220 | 150 |
Abrasive flow rate | SiC (4 μm) slurry with a concentration of 0.2 g/ml and flow rate of 44 ml/h | — |
Table 2 Experimental details of the wear tests.
Parameter | Microabrasion | Dry sliding wear |
---|---|---|
Normal load (N) | 0.2 | 70 |
Wear counterpart | Stainless steel ball, Φ25 | Si3N4 ball, Φ5 |
Wear time (min) | 30 | 30 |
Wear distance (m) | 220 | 150 |
Abrasive flow rate | SiC (4 μm) slurry with a concentration of 0.2 g/ml and flow rate of 44 ml/h | — |
Specimen No. | Relative density (%) | Amount of magnetic Co (wt%) | Vickers hardness (HV30) | Fracture toughness (MPa m1/2) |
---|---|---|---|---|
S1 | 99.5 | 7.87 | 1489 ± 10 | — |
S2 | 99.8 | 7.68 | 1549 ± 9 | — |
S3 | 97.7 | 7.34 | 1715 ± 25 | 11.3 ± 0.7 |
S4 | 98.5 | 7.41 | 2154 ± 27 | 11.3 ± 0.3 |
Table 3 Properties of the prepared cemented carbides.
Specimen No. | Relative density (%) | Amount of magnetic Co (wt%) | Vickers hardness (HV30) | Fracture toughness (MPa m1/2) |
---|---|---|---|---|
S1 | 99.5 | 7.87 | 1489 ± 10 | — |
S2 | 99.8 | 7.68 | 1549 ± 9 | — |
S3 | 97.7 | 7.34 | 1715 ± 25 | 11.3 ± 0.7 |
S4 | 98.5 | 7.41 | 2154 ± 27 | 11.3 ± 0.3 |
Fig. 4. Typical optical images of craters caused on the sintered samples with (a) 2.2 μm, (b) 1.6 μm, (c) 0.8 μm and (d) 0.4 μm after microabrasion tests, and (e) the cross-sectional profiles of the craters.
Fig. 6. 3D surface topographies obtained from vertical scanning white-light interference microscopy and corresponding cross-sectional profiles of sliding wear scars of the sintered WC-Co cemented carbides with (a) 2.2 μm, (b) 1.6 μm, (c) 0.8 μm and (d) 0.4 μm.
Fig. 7. Variation of scratch width (a) and calculated compressive stress (b) with the increase of applied load on the sintered WC-Co cemented carbides.
Fig. 8. Microstructures of the sintered WC-Co cemented carbides after microabrasion test under the load of 0.2 N: (a, b) 2.2 μm; (c, d) 1.6 μm; (e, f) 0.8 μm; (g, h) 0.4 μm.
Fig. 9. Typical wear characteristics and elemental analyses of the coarse-grained cemented carbide after sliding wear test under the load of 70 N: (a) low-magnification image; (b) mixed WC and Co fragments; (c) powdery oxides containing W and Co; (d) rod-like W oxides; (e) fracture of WC grain. EDS maps show the distributions of O, Co and W in (a). The area marked with circle in (a) shows irregular fracture and fragmentation of WC grains.
Fig. 10. Typical wear characteristics EDS maps of the submicron-grained cemented carbide after sliding wear test under the load of 70 N: (a) low-magnification image; (b) irregular fracture of WC; (c) oxide scales. The EDS maps show the distributions of O, Co and W in (a).
Fig. 11. Worn microstructures of the ultrafine-grained cemented carbide after sliding wear test at 70 N: (a) low-magnification image; (b) high-magnification image; (c) EDS spectrum obtained by scanning the entire imaged area of (a); (d) EDS spectrum obtained at the point marked with “+” in (b).
Fig. 12. Typical microstructures of scratches on the coarse-grained cemented carbides with loads of (a) 10 N, (c) 40 N, (e) 50 N and (g) 70 N and ultrafine-grained with loads of (b) 10 N, (d) 40 N, (f) 50 N and (h) 70 N.
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Pablo D. Enrique, Ehsan Marzbanrad, Yahya Mahmoodkhani, Ali Keshavarzkermani, Hashem Al Momani, Ehsan Toyserkani, Norman Y. Zhou. Design of binder jet additive manufactured co-continuous ceramic-reinforced metal matrix composites [J]. J. Mater. Sci. Technol., 2020, 49(0): 81-90. |
[3] | X.Y. Jiao, C.F. Liu, Z.P. Guo, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S.M. Xiong. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy [J]. J. Mater. Sci. Technol., 2020, 51(0): 54-62. |
[4] | Huan Liu, Chao Sun, Ce Wang, Yuhua Li, Jing Bai, Feng Xue, Aibin Ma, Jinghua Jiang. Improving toughness of a Mg2Ca-containing Mg-Al-Ca-Mn alloy via refinement and uniform dispersion of Mg2Ca particles [J]. J. Mater. Sci. Technol., 2020, 59(0): 61-71. |
[5] | Xiankun Ji, Baoqi Guo, Fulin Jiang, Hong Yu, Dingfa Fu, Jie Teng, Hui Zhang, John J.Jonas. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain [J]. J. Mater. Sci. Technol., 2020, 36(0): 160-166. |
[6] | Weijie Ren, Dejia Liu, Qing Liu, Renlong Xin. Influence of texture distribution in magnesium welds on their non-uniform mechanical behavior: A CPFEM study [J]. J. Mater. Sci. Technol., 2020, 46(0): 168-176. |
[7] | Peipei Ma, Chunhui Liu, Qiuyu Chen, Qing Wang, Lihua Zhan, Jianjun Li. Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy [J]. J. Mater. Sci. Technol., 2020, 46(0): 107-113. |
[8] | Yinchuan Wang, Hua Huang, Gaozhi Jia, Guizhou Ke, Jian Zhang, Guangyin Yuan. Effect of grain size on the mechanical properties of Mg foams [J]. J. Mater. Sci. Technol., 2020, 58(0): 46-54. |
[9] | Yinling Zhang, Aihan Feng, Shoujiang Qu, Jun Shen, Daolun Chen. Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy [J]. J. Mater. Sci. Technol., 2020, 44(0): 140-147. |
[10] | Yuan Zhang, Guoqi Tan, Da Jiao, Jian Zhang, Shaogang Wang, Feng Liu, Zengqian Liu, Longchao Zhuo, Zhefeng Zhang, Sylvain Deville, Robert O. Ritchie. Ice-templated porous tungsten and tungsten carbide inspired by natural wood [J]. J. Mater. Sci. Technol., 2020, 45(0): 187-197. |
[11] | Hao Li, Qinghui Zeng, Pengfei Yang, Qi Sun, Jianmin Wang, Jian Tu, Minhao Zhu. Towards understanding twinning behavior near fracture surface in magnesium [J]. J. Mater. Sci. Technol., 2020, 43(0): 230-237. |
[12] | H.T. Jeong, W.J. Kim. Grain size and temperature effect on the tensile behavior and deformation mechanisms of non-equiatomic Fe41Mn25Ni24Co8Cr2 high entropy alloy [J]. J. Mater. Sci. Technol., 2020, 42(0): 190-202. |
[13] | Shuxia Wang, Chuanwei Li, Lizhan Han, Haozhang Zhong, Jianfeng Gu. Visualization of microstructural factors resisting the crack propagation in mesosegregated high-strength low-alloy steel [J]. J. Mater. Sci. Technol., 2020, 42(0): 75-84. |
[14] | Wei Li, Martina Vittorietti, Geurt Jongbloed, Jilt Sietsma. The combined influence of grain size distribution and dislocation density on hardness of interstitial free steel [J]. J. Mater. Sci. Technol., 2020, 45(0): 35-43. |
[15] | Chunjuan Cui, Cong Wang, Pei Wang, Wei Liu, Yuanyuan Lai, Li Deng, Haijun Su. Microstructure and fracture toughness of the Bridgman directionally solidified Fe-Al-Ta eutectic at different solidification rates [J]. J. Mater. Sci. Technol., 2020, 42(0): 63-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||