J. Mater. Sci. Technol. ›› 2019, Vol. 35 ›› Issue (7): 1211-1217.DOI: 10.1016/j.jmst.2019.01.007
• Orginal Article • Next Articles
Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu*(), Shaokang Guan*(
)
Received:
2018-10-10
Accepted:
2018-11-28
Online:
2019-07-20
Published:
2019-06-20
Contact:
Zhu Shijie,Guan Shaokang
About author:
1These authors contributed equally to this work.
Jianfeng Wang, Hongbo Zhou, Liguo Wang, Shijie Zhu, Shaokang Guan. Microstructure, mechanical properties and deformation mechanisms of an as-cast Mg-Zn-Y-Nd-Zr alloy for stent applications[J]. J. Mater. Sci. Technol., 2019, 35(7): 1211-1217.
Fig. 3. (a) TEM bright field image of the second phase at grain boundary for the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy; (b) EDS result of region A in (a); (c), (d), and (e) SAED patterns of regions B, C, and D in (a), taken from the [17 4 23], [423], and [861] zone axes, respectively.
Fig. 4. Tensile engineering stress?strain curves of three specimens for the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy, the inset is SEM fractograph after tensile test.
Alloys | YS (MPa) | UTS (MPa) | Fracture elongation (%) | Ref. |
---|---|---|---|---|
Mg-2Zn-0.2Y-0.5Nd-0.4 Zr | 89 ± 6 | 203 ± 5 | 35 ± 3 | This work |
Mg-2.0Zn | 27 ± 2 | 145.9 ± 3 | 12.23 ± 1.5 | [ |
Mg-4.0Zn | 58 ± 1.5 | 216.8 ± 10 | 15.8 ± 5.5 | [ |
Mg-4.0Zn-0.2Ca | 58.1 ± 1 | 225 ± 5 | 17.5 ± 1 | [ |
Mg-4.0Zn-2Ca | 90 ± 4 | 143 ± 5 | 2.1 ± 0.2 | [ |
Mg-1.0Zn-1Mn | 44 | 174 | ?$\widetilde{1}$2 | [ |
Mg-2.0Zn-1Mn | ?$\widetilde{6}$0 | ?$\widetilde{1}$80 | $\widetilde{1}$1 | [ |
Mg-2Zn-0.46Y-0.5Nd | 105 | 209 | 10.6 | [ |
Mg-2.5Zn-0.3Ca-0.4La | 77 | 164 | 7 | [ |
Mg-4.5Zn-1Y-3Nd-0.5 Zr | - | 219.2 | 11 | [ |
Mg-3Zn-0.9Y-0.6Nd-0.6 Zr | 119 | 180 | 12.3 | [ |
Mg-6.0Gd-1Zn | 144 ± 1.4 | 144 ± 1.4 | 8 ± 1.2 | [ |
Mg-6.0Al-1Zn (AZ61) | 121 ± 2.4 | 218 ± 8.1 | 10 ± 1.2 | [ |
Mg-3.0Gd-3.0Al-1Zn | 121 ± 2.4 | 218 ± 8.1 | 10 ± 1.2 | [ |
Mg-5.0Zn-0.6 Zr | 88 | 236 | 18 | [ |
Mg-5.0Zn-2Nd-0.6 Zr | 102 | 134 | 3 | [ |
Mg-5.0Zn-2Nd-1Y-0.6 Zr | - | 220 | 12 | [ |
Mg-3Nd-0.2Zn-0.5 Zr | 92 | ?$\widetilde{2}$25 | 9.5 | [ |
Table 1 Mechanical properties of the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy and several typical as-cast Mg alloys reported previously. YS and UTS are yield strength and ultimate tensile strength, respectively.
Alloys | YS (MPa) | UTS (MPa) | Fracture elongation (%) | Ref. |
---|---|---|---|---|
Mg-2Zn-0.2Y-0.5Nd-0.4 Zr | 89 ± 6 | 203 ± 5 | 35 ± 3 | This work |
Mg-2.0Zn | 27 ± 2 | 145.9 ± 3 | 12.23 ± 1.5 | [ |
Mg-4.0Zn | 58 ± 1.5 | 216.8 ± 10 | 15.8 ± 5.5 | [ |
Mg-4.0Zn-0.2Ca | 58.1 ± 1 | 225 ± 5 | 17.5 ± 1 | [ |
Mg-4.0Zn-2Ca | 90 ± 4 | 143 ± 5 | 2.1 ± 0.2 | [ |
Mg-1.0Zn-1Mn | 44 | 174 | ?$\widetilde{1}$2 | [ |
Mg-2.0Zn-1Mn | ?$\widetilde{6}$0 | ?$\widetilde{1}$80 | $\widetilde{1}$1 | [ |
Mg-2Zn-0.46Y-0.5Nd | 105 | 209 | 10.6 | [ |
Mg-2.5Zn-0.3Ca-0.4La | 77 | 164 | 7 | [ |
Mg-4.5Zn-1Y-3Nd-0.5 Zr | - | 219.2 | 11 | [ |
Mg-3Zn-0.9Y-0.6Nd-0.6 Zr | 119 | 180 | 12.3 | [ |
Mg-6.0Gd-1Zn | 144 ± 1.4 | 144 ± 1.4 | 8 ± 1.2 | [ |
Mg-6.0Al-1Zn (AZ61) | 121 ± 2.4 | 218 ± 8.1 | 10 ± 1.2 | [ |
Mg-3.0Gd-3.0Al-1Zn | 121 ± 2.4 | 218 ± 8.1 | 10 ± 1.2 | [ |
Mg-5.0Zn-0.6 Zr | 88 | 236 | 18 | [ |
Mg-5.0Zn-2Nd-0.6 Zr | 102 | 134 | 3 | [ |
Mg-5.0Zn-2Nd-1Y-0.6 Zr | - | 220 | 12 | [ |
Mg-3Nd-0.2Zn-0.5 Zr | 92 | ?$\widetilde{2}$25 | 9.5 | [ |
Fig. 5. TEM bright field images of the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy after a plastic strain of 5% showing (a) dislocations and (b) twins; (c) TEM dark field image of the squared region in (b).
Fig. 7. (a) TEM bright field image and (b) corresponding dark field image of the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy after a plastic strain of 35%.
Fig. 9. (a) HRTEM image of the as-cast Mg-2Zn-0.2Y-0.5Nd-0.4 Zr alloy after a plastic strain of 35% viewed along the [1 - 21 - 3]Mg zone axis; (b) corresponding fast Fourier transform pattern; (c) and (d) inverse fast Fourier transform lattice images of the reflections of (0 - 1 11) and (1 - 1 01) crystal faces, respectively.
|
[1] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[2] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[3] | Xiaoxiao Li, Meiqiong Ou, Min Wang, Long Zhang, Yingche Ma, Kui Liu. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 177-185. |
[4] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[5] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[6] | Qianqian Jin, Xiaohong Shao, Shijian Zheng, Yangtao Zhou, Bo Zhang, Xiuliang Ma. Interfacial dislocations dominated lateral growth of long-period stacking ordered phase in Mg alloys [J]. J. Mater. Sci. Technol., 2021, 61(0): 114-118. |
[7] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[8] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[9] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[10] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[11] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[12] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[13] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[14] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[15] | Xingchen Xu, Daoxin Liu, Xiaohua Zhang, Chengsong Liu, Dan Liu. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40(0): 88-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||