J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (12): 2480-2491.DOI: 10.1016/j.jmst.2018.05.020
Special Issue: Corrosion in 2018; Biomaterials 2018
• Orginal Article • Previous Articles Next Articles
Xianbo Shia, Wei Yana*(), Dake Xub, Maocheng Yana, Chunguang Yanga, Yiyin Shana, Ke Yanga*(
)
Received:
2018-02-05
Revised:
2018-03-30
Accepted:
2018-05-07
Online:
2018-12-20
Published:
2018-11-15
Contact:
Yan Wei,Yang Ke
Xianbo Shi, Wei Yan, Dake Xu, Maocheng Yan, Chunguang Yang, Yiyin Shan, Ke Yang. Microbial corrosion resistance of a novel Cu-bearing pipeline steel[J]. J. Mater. Sci. Technol., 2018, 34(12): 2480-2491.
Steel | C | Cu | Mn | Mo | Si | Ni | Cr | Nb?+?V?+?Ti | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0Cu | 0.031 | 1.06 | 1.09 | 0.31 | 0.13 | 0.32 | 0.32 | 0.05 | 0.0011 | 0.005 | Bal. |
2.0Cu | 0.023 | 2.00 | 1.06 | 0.30 | 0.14 | 0.30 | 0.30 | 0.05 | 0.0010 | 0.005 | Bal. |
X80 | 0.050 | 0.02 | 1.77 | 0.30 | 0.16 | 0.29 | 0.30 | 0.10 | 0.0010 | 0.005 | Bal. |
Table 1 Chemical compositions of experimental steels (wt%).
Steel | C | Cu | Mn | Mo | Si | Ni | Cr | Nb?+?V?+?Ti | S | P | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0Cu | 0.031 | 1.06 | 1.09 | 0.31 | 0.13 | 0.32 | 0.32 | 0.05 | 0.0011 | 0.005 | Bal. |
2.0Cu | 0.023 | 2.00 | 1.06 | 0.30 | 0.14 | 0.30 | 0.30 | 0.05 | 0.0010 | 0.005 | Bal. |
X80 | 0.050 | 0.02 | 1.77 | 0.30 | 0.16 | 0.29 | 0.30 | 0.10 | 0.0010 | 0.005 | Bal. |
Steel | Interpass reduction in thickness (mm) and rolling temperature (°C) | Accelerated cooling | ||||||
---|---|---|---|---|---|---|---|---|
78?→?62 | 62?→?45 | 45?→?30 | 30?→?24 | 24?→?16 | 16?→?11 | 11?→?8 | Water cooling rate (°C/s) | |
1.0Cu | 1086 | 1037 | 969 | 915 | a | a | 819 | >30 |
2.0Cu | 1069 | 1021 | 975 | 925 | a | a | 834 | >30 |
Table 2 Procedure of thermo-mechanical control process (TMCP) for Cu-bearing pipeline steels.
Steel | Interpass reduction in thickness (mm) and rolling temperature (°C) | Accelerated cooling | ||||||
---|---|---|---|---|---|---|---|---|
78?→?62 | 62?→?45 | 45?→?30 | 30?→?24 | 24?→?16 | 16?→?11 | 11?→?8 | Water cooling rate (°C/s) | |
1.0Cu | 1086 | 1037 | 969 | 915 | a | a | 819 | >30 |
2.0Cu | 1069 | 1021 | 975 | 925 | a | a | 834 | >30 |
Steel | YS (MPa) | UTS (MPa) | EL (%) | CVN (J) |
---|---|---|---|---|
1.0Cu as-rolled | 552 | 741 | 24.9 | 125 |
2.0Cu as-rolled | 634 | 783 | 21.3 | 41 |
X80 as-rolled | 657 | 729 | 23.5 | 116 |
1.0Cu as-aged | 692 | 745 | 22.1 | 120 |
2.0Cu as-aged | 860 | 923 | 16.5 | 24 |
Table 3 Yield strength (YS), ultimate tensile strength (UTS), elongation (EL) and Charpy V-notch absorbed energy (CVN) of experimental steels.
Steel | YS (MPa) | UTS (MPa) | EL (%) | CVN (J) |
---|---|---|---|---|
1.0Cu as-rolled | 552 | 741 | 24.9 | 125 |
2.0Cu as-rolled | 634 | 783 | 21.3 | 41 |
X80 as-rolled | 657 | 729 | 23.5 | 116 |
1.0Cu as-aged | 692 | 745 | 22.1 | 120 |
2.0Cu as-aged | 860 | 923 | 16.5 | 24 |
Fig. 6. Morphologies of corrosion products on surfaces for R1.0Cu (a, b), A1.0Cu (c, d) and X80 (e, f) exposed to NS4 solution with SRB for 60 d at low (a, c, e) and high (b, d, f) magnification.
Fig. 8. Corrosion attacked surface morphologies (a, c, e) and 3D images (b, d, f) of R1.0Cu (a, b), A1.0Cu (c, d) and X80 (e, f) steels after 60 d exposure in SRB-inoculated NS4 solution.
Steel | Pit density (No./mm2) | Maxium pit depth (μm) | Average pit depth (μm) |
---|---|---|---|
R1.0Cu | 170 | 2.1 | 1.70?±?0.15 |
A1.0Cu | 34 | 1.3 | 0.70?±?0.13 |
X80 | 709 | 2.9 | 2.20?±?0.28 |
Table 4 Pit density and pit depth (total 30 pits were measured) of 1.0Cu and X80 steels after 60 d exposure in SRB-inoculated NS4 solution.
Steel | Pit density (No./mm2) | Maxium pit depth (μm) | Average pit depth (μm) |
---|---|---|---|
R1.0Cu | 170 | 2.1 | 1.70?±?0.15 |
A1.0Cu | 34 | 1.3 | 0.70?±?0.13 |
X80 | 709 | 2.9 | 2.20?±?0.28 |
Fig. 9. Variation of linear polarization resistance (RLPR) (a) and corrosion current density (icorr) (b) with exposure time for A1.0Cu and X80 steels in 2216E medium inoculated with P. aeruginosa.
Fig. 13. Morphologies of pits on surfaces of A1.0Cu (a, b) and X80 (c, d) steels at low (a, c) and high (b, d) magnification after 14 d immersion with P. aeruginosa.
|
[1] | Zhangweijia Qiu, Zhengkun Li, Huameng Fu, Hongwei Zhang, Zhengwang Zhu, Aimin Wang, Hong Li, Long Zhang, Haifeng Zhang. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46(0): 33-43. |
[2] | Enze Zhou, Jianjun Wang, Masoumeh Moradi, Huabing Li, Dake Xu, Yuntian Lou, Jinheng Luo, Lifeng Li, Yulei Wang, Zhenguo Yang, Fuhui Wang, Jessica A. Smith. Methanogenic archaea and sulfate reducing bacteria induce severe corrosion of steel pipelines after hydrostatic testing [J]. J. Mater. Sci. Technol., 2020, 48(0): 72-83. |
[3] | Zhuowei Tan, Liuyang Yang, Dalei Zhang, Zhenbo Wang, Frank Cheng, Mingyang Zhang, Youhai Jin. Development mechanism of internal local corrosion of X80 pipeline steel [J]. J. Mater. Sci. Technol., 2020, 49(0): 186-201. |
[4] | Shidong Wang, Lyndon Lamborn, Karina Chevil, Erwin Gamboa, Weixing Chen. Near-neutral pH corrosion of mill-scaled X-65 pipeline steel with paint primer [J]. J. Mater. Sci. Technol., 2020, 49(0): 166-178. |
[5] | S.G. Wang, M. Sun, S.Y. Liu, X. Liu, Y.H. Xu, C.B. Gong, K. Long, Z.D. Zhang. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel [J]. J. Mater. Sci. Technol., 2020, 37(0): 161-172. |
[6] | Yuqiao Dong, Yassir Lekbach, Zhong Li, Dake Xu, Soumya El Abed, Saad Ibnsouda Koraichi, Fuhui Wang. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae [J]. J. Mater. Sci. Technol., 2020, 37(0): 200-206. |
[7] | Yanan Pu, Wenwen Dou, Tingyue Gu, Shiya Tang, Xiaomei Han, Shougang Chen. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47(0): 10-19. |
[8] | Di Wang, Mahmoud Ramadan, Sith Kumseranee, Suchada Punpruk, Tingyue Gu. Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide [J]. J. Mater. Sci. Technol., 2020, 57(0): 146-152. |
[9] | Tingyue Gu, Ru Jia, Tuba Unsal, Dake Xu. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35(4): 631-636. |
[10] | Fuliang Ma, Jinlong Li, Zhixiang Zeng, Yimin Gao. Tribocorrosion behavior in artificial seawater and anti-microbiologically influenced corrosion properties of TiSiN-Cu coating on F690 steel [J]. J. Mater. Sci. Technol., 2019, 35(3): 448-459. |
[11] | Dan Liu, Ru Jia, Dake Xu, Hongying Yang, Ying Zhao, M. saleem Khan, Songtao Huang, Jiankang Wen, Ke Yang, Tingyue Gu. Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti [J]. J. Mater. Sci. Technol., 2019, 35(11): 2494-2502. |
[12] | M. Saleem Khan, Zhong Li, Ke Yang, Dake Xu, Chunguang Yang, Dan Liu, Yassir Lekbach, Enze Zhou, Phuri Kalnaowakul. Microbiologically influenced corrosion of titanium caused by aerobic marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2019, 35(1): 216-222. |
[13] | Dake Xu, Enze Zhou, Ying Zhao, Huabing Li, Zhiyong Liu, Dawei Zhang, Chunguang Yang, Hai Lin, Xiaogang Li, Ke Yang. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34(8): 1325-1336. |
[14] | Yingchao Li, Dake Xu, Changfeng Chen, Xiaogang Li, Ru Jia, Dawei Zhang, Wolfgang Sand, Fuhui Wang, Tingyue Gu. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34(10): 1713-1718. |
[15] | Hao Feng, Huabing Li, Xiaolei Wu, Zhouhua Jiang, Si Zhao, Tao Zhang, Dake Xu, Shucai Zhang, Hongchun Zhu, Binbin Zhang, Muxin Yang. Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1781-1790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||