J. Mater. Sci. Technol. ›› 2018, Vol. 34 ›› Issue (12): 2290-2296.DOI: 10.1016/j.jmst.2018.04.012
• Orginal Article • Previous Articles Next Articles
Xindong Qina, Zhengkun Lia, Zhengwang Zhua*(), Huameng Fuab, Hong Lia, Aimin Wanga, Hongwei Zhanga, Haifeng Zhanga*(
)
Received:
2017-12-29
Revised:
2018-01-25
Accepted:
2018-02-08
Online:
2018-12-20
Published:
2018-11-15
Contact:
Zhu Zhengwang,Zhang Haifeng
Xindong Qin, Zhengkun Li, Zhengwang Zhu, Huameng Fu, Hong Li, Aimin Wang, Hongwei Zhang, Haifeng Zhang. Fe-based metallic glass: An efficient and energy-saving electrode material for electrocatalytic degradation of water contaminants[J]. J. Mater. Sci. Technol., 2018, 34(12): 2290-2296.
Fig. 2. (a) XRD and (b) DSC patterns of Fe-based MG ribbons before and after electrochemically degrading AO II aqueous solution with a voltage of 1?V.
Fig. 3. UV-vis absorption spectra of AO II aqueous solutions treated with Fe-based MG ribbons at a voltage of 1?V (a) and 0?V (c) for different reaction time, degradation efficiency and specific energy consumption of the electrochemical degradation processes (b) and degradation efficiencies for chemical process (d). The insets of (b) and (d) are the corresponding photographs of the AO II solution at different reaction time (C0?=?0.2?g?L-1; Edye: specific energy consumption).
Fig. 4. (a) Influence of cell voltage on degradation efficiency (C0?=?0.2?g?L-1; the inset of (a) is the degradation efficiency at a voltage of 0.5?V) and (b) influence of solution concentration on degradation efficiency and specific energy consumption (U?=?1?V, t?=?10?min).
Fig. 5. Comparison between Fe-based MG and Fe electrodes regarding degradation efficiencies (a), specific electrode mass consumption (b) and specific energy consumption (c) at different cell voltages (C0?=?0.2?g?L-1), specific energy consumption during the electrochemical experiments using Fe-based MG electrodes and some typical nonconsumable electrodes (d).
Fig. 6. (a) Influence of benzoic acid concentration on degradation efficiency and (b) a new degradation process initiated using initial dye concentration by adding AO II after 10?min of treatment (U?=?1?V,?C0?=?0.2?g?L-1).
Fig. 8. SEM micrographs of Fe-based MGs (a) and Fe (b) electrodes after electrocatalytic degradation reaction (U?=?1?V) and SEM micrograph of Fe-based MGs after degrading dye under open circuit conditions without a current (c).
|
[1] | Panyong Kuang, Jingxiang Low, Bei Cheng, Jiaguo Yu, Jiajie Fan. MXene-based photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 18-44. |
[2] | Dongran Qin, Yang Xia, Qin Li, Chao Yang, Yanmin Qin, Kangle Lv. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure [J]. J. Mater. Sci. Technol., 2020, 56(0): 206-215. |
[3] | Meng-Jie Chang, Wen-Na Cui, Jun Liu, Kang Wang, Hui-Ling Du, Lei Qiu, Si-Meng Fan, Zhen-Min Luo. Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis [J]. J. Mater. Sci. Technol., 2020, 36(0): 97-105. |
[4] | Bowen Zhao, Zhengwang Zhu, Xin Dong Qin, Zhengkun Li, Haifeng Zhang. Highly efficient and stable CuZr-based metallic glassy catalysts for azo dye degradation [J]. J. Mater. Sci. Technol., 2020, 46(0): 88-97. |
[5] | Xiaoyi Shen, Hongmei Shao, Yan Liu, Yuchun Zhai. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51(0): 1-7. |
[6] | Jianying Huang, Jiali Shen, Shuhui Li, Jingsheng Cai, Shanchi Wang, Yao Lu, Jihuan He, Claire J.Carmalt, Ivan P.Parkin, Yuekun Lai. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation [J]. J. Mater. Sci. Technol., 2020, 39(0): 28-38. |
[7] | Yanhui Li, Siwen Wang, Xuewei Wang, Meiling Yin, Wei Zhang. New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance [J]. J. Mater. Sci. Technol., 2020, 43(0): 32-39. |
[8] | Kim Jeong Tae, Hong Sung Hwan, Park Jin Man, Jürgen Eckert, Kim Ki Buem. New para-magnetic (CoFeNi)50(CrMo)50-x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties [J]. J. Mater. Sci. Technol., 2020, 43(0): 135-143. |
[9] | Xian Yue, Junhui Xiang, Junyong Chen, Huaxin Li, Yunsheng Qiu, Xianbo Yu. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization [J]. J. Mater. Sci. Technol., 2020, 47(0): 223-230. |
[10] | Yunfeng Li, Minghua Zhou, Bei Cheng, Yan Shao. Recent advances in g-C3N4-based heterojunction photocatalysts [J]. J. Mater. Sci. Technol., 2020, 56(0): 1-17. |
[11] | Duoduo Gao, Ranran Yuan, Jiajie Fan, Xuekun Hong, Huogen Yu. Highly efficient S2--adsorbed MoSx-modified TiO2 photocatalysts: A general grafting strategy and boosted interfacial charge transfer [J]. J. Mater. Sci. Technol., 2020, 56(0): 122-132. |
[12] | Peng Jia, Ruiwen Huang, Suode Zhang, Engang Wang, Jiahao Yao. Synthesis of Ag-Cr thin film metallic glasses with enhanced sulfide-resistance [J]. J. Mater. Sci. Technol., 2020, 53(0): 32-36. |
[13] | L. Huang, Z.Q. Chen, P. Huang, X.K. Meng, F. Wang. Irradiation-induced homogeneous plasticity in amorphous/amorphous nanolaminates [J]. J. Mater. Sci. Technol., 2020, 57(0): 70-77. |
[14] | Binbin Wang, Liangshun Luo, Fuyu Dong, Liang Wang, Hongying Wang, Fuxin Wang, Lei Luo, Baoxian Su, Yanqing Su, Jingjie Guo, Hengzhi Fu. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study [J]. J. Mater. Sci. Technol., 2020, 45(0): 198-206. |
[15] | Fengli Liang, Ziqiong Yang, Haipeng Deng, Jaka Sunarso, Lili Yang, Junkui Mao. Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ by CO2 thermal treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1184-1191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||