J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (6): 523-526.DOI: 10.1016/j.jmst.2016.10.009
• Orginal Article • Previous Articles Next Articles
Kim Hyegyeong1, Kim JiWoong1, Lee Dooyong1, Lee Won-Jae2(), Bae Jong-Seong3, Lee Jaekwang1, Park Sungkyun1(
)
Received:
2016-06-29
Revised:
2016-09-24
Accepted:
2016-10-10
Online:
2017-06-20
Published:
2017-08-22
About author:
These authors contributed equally to this work.
Kim Hyegyeong, Kim JiWoong, Lee Dooyong, Lee Won-Jae, Bae Jong-Seong, Lee Jaekwang, Park Sungkyun. Spectroscopic Understanding of Structural and Electrical Property Variations in Dopant-Free ZnO Films[J]. J. Mater. Sci. Technol., 2017, 33(6): 523-526.
Fig. 1. (a) XRD profile of the as-grown and post-annealed ZnO films grown on Al2O3(0001) at room temperature. The vertical dotted line indicates the reference ZnO(002) peak position (2θ = 34.42°). The inset shows the full range of XRD pattern of the films. (b) ω-rocking curves of the ZnO films grown on Al2O3(0001) at room temperature. The vertical dotted line indicates the half of the reference ZnO(002) peak position.
Annealing environment | 2θ(002) (°) | FWHM(002) (°) | FWHM of ω-Rocking (°) | Stress (GPa) |
---|---|---|---|---|
Vacuum | 34.39 | 0.25 | 1.16 | -0.46 |
N2 | 34.36 | 0.22 | 0.84 | -0.74 |
In-Air | 34.45 | 0.25 | 1.14 | 0.34 |
O2 | 34.40 | 0.23 | 0.98 | -0.32 |
As-grown | 34.11 | 0.25 | 2.08 | -3.85 |
Table 1 As-grown and post-annealing environment-dependent structural properties of ZnO films
Annealing environment | 2θ(002) (°) | FWHM(002) (°) | FWHM of ω-Rocking (°) | Stress (GPa) |
---|---|---|---|---|
Vacuum | 34.39 | 0.25 | 1.16 | -0.46 |
N2 | 34.36 | 0.22 | 0.84 | -0.74 |
In-Air | 34.45 | 0.25 | 1.14 | 0.34 |
O2 | 34.40 | 0.23 | 0.98 | -0.32 |
As-grown | 34.11 | 0.25 | 2.08 | -3.85 |
Annealing environment | Concentration (cm-3) | Mobility (cm2/(V s)) | Conductivity (1/(Ω cm)) |
---|---|---|---|
Vacuum | -1.37 × 1017 | 1.39 | 3.05 × 10-2 |
N2 | -9.11 × 1018 | 15.10 | 22.00 |
In-Air | -3.13 × 1018 | 7.87 | 3.94 |
O2 | -2.17 × 1016 | 0.32 | 3.12 × 10-4 |
Table 2 Post-annealing environment-dependent electrical properties of ZnO films
Annealing environment | Concentration (cm-3) | Mobility (cm2/(V s)) | Conductivity (1/(Ω cm)) |
---|---|---|---|
Vacuum | -1.37 × 1017 | 1.39 | 3.05 × 10-2 |
N2 | -9.11 × 1018 | 15.10 | 22.00 |
In-Air | -3.13 × 1018 | 7.87 | 3.94 |
O2 | -2.17 × 1016 | 0.32 | 3.12 × 10-4 |
Fig. 3. Core-level XPS spectra of O 1s of as-grown and post-annealed ZnO films grown on Al2O3(0001). The vertical dotted lines indicate the reference of O 1s binding energy associated with loosely bound oxygen (532.40 eV), VO (531.25 eV) and Zn-O (530.15 eV)[21-24].
Annealing environment | Binding energy | ||
---|---|---|---|
Loosely bound O2 (532.05 ± 0.18) eV | VO (531.13 ± 0.13) eV | Zn-O (530.19 ± 0.30) eV | |
Vacuum | 44.59% | 16.35% | 39.06% |
N2 | 36.42% | 19.93% | 43.65% |
In-Air | 41.99% | 18.56% | 39.45% |
O2 | 48.50% | 10.99% | 40.51% |
As-grown | 50.23% | 11.67% | 38.10% |
Table 3 Deconvoluted peak area ratio of O 1s spectra of as-grown and post-annealed ZnO films
Annealing environment | Binding energy | ||
---|---|---|---|
Loosely bound O2 (532.05 ± 0.18) eV | VO (531.13 ± 0.13) eV | Zn-O (530.19 ± 0.30) eV | |
Vacuum | 44.59% | 16.35% | 39.06% |
N2 | 36.42% | 19.93% | 43.65% |
In-Air | 41.99% | 18.56% | 39.45% |
O2 | 48.50% | 10.99% | 40.51% |
As-grown | 50.23% | 11.67% | 38.10% |
Fig. 4. (a) Correlation between FWHM of ω-rocking and the fraction of ZnO bonding and (b) correlation between electron concentration and the fraction of VO.
|
[1] | Jinkui Fan, Qiang Zheng, Rui Bao, Jianhong Yi, Juan Du. High performance Sm-Co powders obtained by crystallization from ball milled amorphous state [J]. J. Mater. Sci. Technol., 2020, 37(0): 181-184. |
[2] | Hongyu Wu, Dong Zhang, Biaobiao Yang, Chao Chen, Yunping Li, Kechao Zhou, Liang Jiang, Ruiping Liu. Microstructural evolution and defect formation in a powder metallurgy nickel-based superalloy processed by selective laser melting [J]. J. Mater. Sci. Technol., 2020, 36(0): 7-17. |
[3] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[4] | Enkang Hao, Yulong An, Xia Liu, Yijing Wang, Huidi Zhou, Fengyuan Yan. Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating [J]. J. Mater. Sci. Technol., 2020, 53(0): 19-31. |
[5] | Chunni Jia, Chengwu Zheng, Dianzhong Li. Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 1-9. |
[6] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
[7] | Xiaoming Qian, Nick Parson, X.-Grant Chen. Effects of Mn content on recrystallization resistance of AA6082 aluminum alloys during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 52(0): 189-197. |
[8] | Luhan Hao, Xiang Ji, Guangqian Zhang, Wei Zhao, Mingyue Sun, Yan Peng. Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 122-130. |
[9] | Ming-Song Chen, Zong-Huai Zou, Y.C. Lin, Hong-Bin Li, Guan-Qiang Wang. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35(7): 1403-1411. |
[10] | Qian Zhao, Zongqing Ma, Liming Yu, Huijun Li, Chenxi Liu, Chong Li, Yongchang Liu. Tailoring the secondary phases and mechanical properties of ODS steel by heat treatment [J]. J. Mater. Sci. Technol., 2019, 35(6): 1064-1073. |
[11] | Shuang Liang, Gang He, Die Wang, Fen Qiao. Atomic-layer-deposited (ALD) Al2O3 passivation dependent interface chemistry, band alignment and electrical properties of HfYO/Si gate stacks [J]. J. Mater. Sci. Technol., 2019, 35(5): 769-776. |
[12] | Daudi Waryoba, Zahabul Islam, Baoming Wang, Aman Haque. Low temperature annealing of metals with electrical wind force effects [J]. J. Mater. Sci. Technol., 2019, 35(4): 465-472. |
[13] | Kun Yang, Jian Wang, Liang Jia, Guangyu Yang, Huiping Tang, Yuanyuan Li. Additive manufacturing of Ti-6Al-4V lattice structures with high structural integrity under large compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(2): 303-308. |
[14] | Cong Peng, Yang Liu, Hui Liu, Shuyuan Zhang, Chunguang Bai, Yizao Wan, Ling Ren, Ke Yang. Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys [J]. J. Mater. Sci. Technol., 2019, 35(10): 2121-2131. |
[15] | Shuan Li, Yanqing Wu, Guoling Li, Hongen Yu, Kai Fu, Yong Wu, Jie Zhang, Wenhuai Tian, Xingguo Li. Ta-doped modified Gd2O3 film for a novel high k gate dielectric [J]. J. Mater. Sci. Technol., 2019, 35(10): 2305-2311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||