J. Mater. Sci. Technol. ›› 2017, Vol. 33 ›› Issue (4): 397-403.DOI: 10.1016/j.jmst.2016.11.013
• Orginal Article • Previous Articles Next Articles
He Tiantian, Wang Wei*(), Chen Wei, Chen Demin*(
), Yang Ke
Received:
2015-06-10
Revised:
2015-08-18
Accepted:
2015-08-19
Online:
2017-04-15
Published:
2017-05-24
Contact:
Wang Wei,Chen Demin
He Tiantian, Wang Wei, Chen Wei, Chen Demin, Yang Ke. Reactivity of Al-rich Alloys with Water Promoted by Liquid Al Grain Boundary Phases[J]. J. Mater. Sci. Technol., 2017, 33(4): 397-403.
Fig. 1. XRD patterns of Al-Ga-Sn and Al-Ga-In alloys: (a) 3 wt% Al-Ga-Sn, (b) 6 wt% Al-Ga-Sn, (c) 8 wt% Al-Ga-Sn, (d) 10 wt% Al-Ga-Sn, (e) 12 wt% Al-Ga-Sn, (f) 15 wt% Al-Ga-Sn, (g) 15 wt% Al-Ga-In, (h) 3 wt% Al-Ga-In.
Fig. 2. Fracture surfaces of (a, b) 3 wt% Al-Ga-Sn alloys, (c, d) 15 wt% Al-Ga-Sn alloys, (e, f) 3 wt% Al-Ga-In alloys, (g, h) 15 wt% Al-Ga-In alloys.
Sample | Spectrum | Phase | Element (at.%) | ||
---|---|---|---|---|---|
Al | Ga | Sn | |||
3 wt% | 1 | G | 98.12 | 1.88 | 0.00 |
2 | GB | 53.15 | 3.11 | 43.74 | |
6 wt% | 3 | G | 97.71 | 2.29 | 0.00 |
4 | GB | 21.21 | 5.67 | 73.12 | |
8 wt% | 5 | G | 97.36 | 2.64 | 0.00 |
6 | GB | 33.32 | 5.33 | 61.35 | |
10 wt% | 7 | G | 96.78 | 3.22 | 0.00 |
8 | GB | 57.37 | 5.49 | 37.14 | |
9 | GB | 66.74 | 31.69 | 1.57 | |
12 wt% | 10 | G | 96.29 | 3.71 | 0.00 |
11 | GB | 28.45 | 9.62 | 61.93 | |
12 | GB | 30.49 | 61.84 | 7.67 | |
15 wt% | 13 | G | 95.79 | 4.21 | 0.00 |
14 | GB | 15.53 | 8.07 | 76.40 | |
15 | GB | 57.95 | 35.60 | 6.45 |
Table 1 Compositions of Al-Ga-Sn alloys obtained using EDX
Sample | Spectrum | Phase | Element (at.%) | ||
---|---|---|---|---|---|
Al | Ga | Sn | |||
3 wt% | 1 | G | 98.12 | 1.88 | 0.00 |
2 | GB | 53.15 | 3.11 | 43.74 | |
6 wt% | 3 | G | 97.71 | 2.29 | 0.00 |
4 | GB | 21.21 | 5.67 | 73.12 | |
8 wt% | 5 | G | 97.36 | 2.64 | 0.00 |
6 | GB | 33.32 | 5.33 | 61.35 | |
10 wt% | 7 | G | 96.78 | 3.22 | 0.00 |
8 | GB | 57.37 | 5.49 | 37.14 | |
9 | GB | 66.74 | 31.69 | 1.57 | |
12 wt% | 10 | G | 96.29 | 3.71 | 0.00 |
11 | GB | 28.45 | 9.62 | 61.93 | |
12 | GB | 30.49 | 61.84 | 7.67 | |
15 wt% | 13 | G | 95.79 | 4.21 | 0.00 |
14 | GB | 15.53 | 8.07 | 76.40 | |
15 | GB | 57.95 | 35.60 | 6.45 |
Alloy | Spectrum | Phase | Element (at.%) | ||
---|---|---|---|---|---|
Al | Ga | In | |||
3 wt% | 1 | G | 98.31 | 1.69 | 0.00 |
2 | GB | 66.16 | 1.45 | 32.39 | |
15 wt% | 3 | G | 95.03 | 4.97 | 0.00 |
4 | GB | 18.56 | 5.67 | 75.77 | |
5 | GB | 50.40 | 7.06 | 42.54 | |
6 | GB | 62.95 | 32.03 | 5.02 |
Table 2 Compositions of Al-Ga-In alloys obtained using EDX
Alloy | Spectrum | Phase | Element (at.%) | ||
---|---|---|---|---|---|
Al | Ga | In | |||
3 wt% | 1 | G | 98.31 | 1.69 | 0.00 |
2 | GB | 66.16 | 1.45 | 32.39 | |
15 wt% | 3 | G | 95.03 | 4.97 | 0.00 |
4 | GB | 18.56 | 5.67 | 75.77 | |
5 | GB | 50.40 | 7.06 | 42.54 | |
6 | GB | 62.95 | 32.03 | 5.02 |
Sample | Primary α-Al | (Al-Sn) eutectic | (Al-Ga-Sn) eutectic |
---|---|---|---|
3 wt% | 95.61 | 4.39 | 0.00 |
6 wt% | 91.43 | 8.57 | 0.00 |
8 wt% | 88.63 | 11.37 | 0.00 |
10 wt% | 89.91 | 2.78 | 7.31 |
12 wt% | 87.85 | 3.30 | 8.85 |
15 wt% | 84.82 | 4.12 | 11.06 |
Table 3 Structural components of Al-Ga-Sn alloys calculated by lever rule (wt%)
Sample | Primary α-Al | (Al-Sn) eutectic | (Al-Ga-Sn) eutectic |
---|---|---|---|
3 wt% | 95.61 | 4.39 | 0.00 |
6 wt% | 91.43 | 8.57 | 0.00 |
8 wt% | 88.63 | 11.37 | 0.00 |
10 wt% | 89.91 | 2.78 | 7.31 |
12 wt% | 87.85 | 3.30 | 8.85 |
15 wt% | 84.82 | 4.12 | 11.06 |
|
[1] | Bailiang Wang, Jiahong Zeng, Yishun Guo, Lin Liang, Yingying Jin, Siyuan Qian, Renjie Miao, Liang Hu, Fan Lu. Reversible grafting of antibiotics onto contact lens mediated by labile chemical bonds for smart prevention and treatment of corneal bacterial infections [J]. J. Mater. Sci. Technol., 2021, 61(0): 169-175. |
[2] | Xiong-jie Gu, Wei-li Cheng, Shi-ming Cheng, Yan-hui Liu, Zhi-feng Wang, Hui Yu, Ze-qin Cui, Li-fei Wang, Hong-xia Wang. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion [J]. J. Mater. Sci. Technol., 2021, 60(0): 77-89. |
[3] | Lin Yuan, Jiangtao Xiong, Yajie Du, Jin Ren, Junmiao Shi, Jinglong Li. Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler [J]. J. Mater. Sci. Technol., 2021, 61(0): 176-185. |
[4] | Seung Woo Lee, Bongho Lee, Chaekyung Baik, Tae-Yang Kim, Chanho Pak. Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells [J]. J. Mater. Sci. Technol., 2021, 60(0): 105-112. |
[5] | Yanxin Qiao, Daokui Xu, Shuo Wang, Yingjie Ma, Jian Chen, Yuxin Wang, Huiling Zhou. Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 168-176. |
[6] | Yunsheng Wu, Xuezhi Qin, Changshuai Wang, Lanzhang Zhou. Microstructural evolution and its influence on the impact toughness of GH984G alloy during long-term thermal exposure [J]. J. Mater. Sci. Technol., 2021, 60(0): 61-69. |
[7] | Hui Jiang, Dongxu Qiao, Wenna Jiao, Kaiming Han, Yiping Lu, Peter K. Liaw. Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 61(0): 119-124. |
[8] | Jincheng Wang, Yujing Liu, Chirag Dhirajlal Rabadia, Shun-Xing Liang, Timothy Barry Sercombe, Lai-Chang Zhang. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture [J]. J. Mater. Sci. Technol., 2021, 61(0): 221-233. |
[9] | Qin Xu, Dezhi Chen, Chongyang Tan, Xiaoqin Bi, Qi Wang, Hongzhi Cui, Shuyan Zhang, Ruirun Chen. NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure [J]. J. Mater. Sci. Technol., 2021, 60(0): 1-7. |
[10] | K.J. Tan, X.G. Wang, J.J. Liang, J. Meng, Y.Z. Zhou, X.F. Sun. Effects of rejuvenation heat treatment on microstructure and creep property of a Ni-based single crystal superalloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 206-215. |
[11] | Hui Xiao, Manping Cheng, Lijun Song. Direct fabrication of single-crystal-like structure using quasi-continuous-wave laser additive manufacturing [J]. J. Mater. Sci. Technol., 2021, 60(0): 216-221. |
[12] | Xing Zhou, Jingrui Deng, Changqing Fang, Wanqing Lei, Yonghua Song, Zisen Zhang, Zhigang Huang, Yan Li. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties [J]. J. Mater. Sci. Technol., 2021, 60(0): 27-34. |
[13] | Zijuan Xu, Zhongtao Li, Yang Tong, Weidong Zhang, Zhenggang Wu. Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy [J]. J. Mater. Sci. Technol., 2021, 60(0): 35-43. |
[14] | B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.X. Qiao, B.J. Wang, J. Wang, Y.F. Zheng, T.F. Xi. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys [J]. J. Mater. Sci. Technol., 2021, 60(0): 44-55. |
[15] | Cheng Gu, Colin D. Ridgeway, Emre Cinkilic, Yan Lu, Alan A. Luo. Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model [J]. J. Mater. Sci. Technol., 2020, 49(0): 91-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||