J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (9): 889-900.DOI: 10.1016/j.jmst.2016.01.007
• Orginal Article • Previous Articles Next Articles
Pan Ting1,2,3,Song Wenjing1,2,3,*(),Cao Xiaodong1,2,3,Wang Yingjun1,2,3,*(
)
Received:
2015-06-10
Accepted:
2015-08-10
Online:
2016-09-20
Published:
2016-11-02
Contact:
Song Wenjing,Wang Yingjun
Pan Ting,Song Wenjing,Cao Xiaodong,Wang Yingjun. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties[J]. J. Mater. Sci. Technol., 2016, 32(9): 889-900.
Fig. 2. Fluorescent images of wet scaffolds treated with different crosslinking processes: (a) CaCl2; (b) CaCl2+0.25% GTA; (c) CaCl2+1% GTA; (d) CaCl2+2.5% GTA; (e) CaCl2+0.25% GTA -90°.
Fig. 3. Low vacuum ESEM images of wet scaffolds of different magnifications: (a) CaCl2; (b) CaCl2+0.25% GTA; (c) CaCl2+1% GTA; (d) CaCl2+2.5% GTA; (e) CaCl2+0.25% GTA -90°.
Fig. 4. 3D rotational microscopy images of magnified surface and cross section of the dried scaffold: (a) CaCl2; (b) CaCl2+0.25% GTA; (c) CaCl2+1% GTA; (d) CaCl2+2.5% GTA; (e) CaCl2+0.25% GTA-90°. 1, 2 indicate the horizontal sections with different magnifications and 3 represents the vertical cross-sections of scaffolds.
Fig. 5. SEM images of magnified surface and cross section of the dried scaffold: (a) CaCl2; (b) CaCl2+0.25% GTA; (c) CaCl2+1% GTA; (d) CaCl2+2.5% GTA; (e) CaCl2+0.25% GTA-90°. 1, 2 indicate the horizontal sections with different magnifications and 3 represents the vertical cross-sections of scaffolds.
Fig. 6. (a) Porosity of both wet and dried scaffolds treated with different crosslinking processes, (b-f) pore size distribution of dried scaffolds. * indicated that there was significant difference (p?<?0.05).
Fig. 7. Reconstruction of 3D images of dried scaffolds by micro-CT: (a) CaCl2; (b) CaCl2+0.25% GTA; (c) CaCl2+1% GTA; (d) CaCl2+2.5% GTA; (e) CaCl2+0.25% GTA-90°.
Fig. 10. (a) Stress-strain curves with a compressing rate of 1?mm/min, (b) and (c) comparison of final deformation rate and Young's modulus. * indicated that there was significant difference (p?<?0.05).
Fig. 11. Fluorescent images of mBMSCs cell adhesion on scaffolds cultured for 3 days. The three parallel figures indicate three different focal planes under the same visual field.
|
[1] | Xiao You, Jinshan Yang, Mengmeng Wang, Hongda Wang, Le Gao, Shaoming Dong. Interconnected graphene scaffolds for functional gas sensors with tunable sensitivity [J]. J. Mater. Sci. Technol., 2020, 58(0): 16-23. |
[2] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[3] | Xianrui Xie, Yujie Chen, Xiaoyu Wang, Xiaoqing Xu, Yihong Shen, Atta ur Rehman Khan, Ali Aldalbahi, Allison E. Fetz, Gary L. Bowlin, Mohamed El-Newehy, Xiumei Mo. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 243-261. |
[4] | Yuan Zhang, Guoqi Tan, Da Jiao, Jian Zhang, Shaogang Wang, Feng Liu, Zengqian Liu, Longchao Zhuo, Zhefeng Zhang, Sylvain Deville, Robert O. Ritchie. Ice-templated porous tungsten and tungsten carbide inspired by natural wood [J]. J. Mater. Sci. Technol., 2020, 45(0): 187-197. |
[5] | Wang Guo, Wei Liu, Li Xu, Pei Feng, Yanru Zhang, Wenjing Yang, Cijun Shuai. Halloysite nanotubes loaded with nano silver for the sustained-release of antibacterial polymer nanocomposite scaffolds [J]. J. Mater. Sci. Technol., 2020, 46(0): 237-247. |
[6] | Kummara Madhusudana Rao, Anuj Kumar, Sung Soo Han. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications [J]. J. Mater. Sci. Technol., 2018, 34(8): 1371-1377. |
[7] | Fariborz Tavangarian, Abbas Fahami, Guoqiang Li, Mohammadhassan Kazemi, Anoosha Forghani. Structural characterization and strengthening mechanism of forsterite nanostructured scaffolds synthesized by multistep sintering method [J]. J. Mater. Sci. Technol., 2018, 34(12): 2263-2270. |
[8] | Huang Qianqian, Liu Shunli, Li Kewen, Hussain Imtiaz, Yao Fang, Fu Guodong. Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel Via Neodymium Ions Coordination [J]. J. Mater. Sci. Technol., 2017, 33(8): 821-826. |
[9] | Fan Changjiang,Wang Dong-An. Novel Gelatin-based Nano-gels with Coordination-induced Drug Loading for Intracellular Delivery [J]. J. Mater. Sci. Technol., 2016, 32(9): 840-844. |
[10] | Sadat-Shojai Mehdi. Electrospun Polyhydroxybutyrate/Hydroxyapatite Nanohybrids: Microstructure and Bone Cell Response [J]. J. Mater. Sci. Technol., 2016, 32(10): 1013-1020. |
[11] | Eun Jung Kim, Jeong Hyun Yeum, Jin Hyun Choi. Effects of Polymeric Stabilizers on the Synthesis of Gold Nanoparticles [J]. J. Mater. Sci. Technol., 2014, 30(2): 107-111. |
[12] | Mehdi Ebrahimian-Hosseinabadi Fakhredin Ashrafizadeh Mohammadreza Etemadifar Subbu S. Venkatraman. Evaluating and Modeling the Mechanical Properties of the Prepared PLGA/nano-BCP Composite Scaffolds for Bone Tissue Engineering [J]. J Mater Sci Technol, 2011, 27(12): 1105-1112. |
[13] | Yanqing Guan Zhibin Li Xin Wang Xiaoli Ni Aini Yang Junming Liu. Synthesis of a Kind of Temperature-responsive Cell Culture Surface for Corneal Sheet [J]. J Mater Sci Technol, 2010, 26(12): 1119-1126. |
[14] | Fang Geng,Lili Tan,Bingchun Zhang,Chunfu Wu,Yonglian He,Jingyu Yang,Ke Yang. Study on β-TCP Coated Porous Mg as a Bone Tissue Engineering Scaffold Material [J]. J Mater Sci Technol, 2009, 25(01): 123-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||