J. Mater. Sci. Technol. ›› 2016, Vol. 32 ›› Issue (7): 653-659.DOI: 10.1016/j.jmst.2016.04.016
Special Issue: 铝合金专辑
• Orginal Article • Previous Articles Next Articles
Sang-Soo Shin1, Gil-Yong Yeom2, Tae-Yang Kwak2, Ik-Min Park1, *
Received:
2016-01-15
Revised:
2016-04-02
Online:
2016-07-10
Published:
2016-10-10
Contact:
Corresponding author. Ph.D.; Tel.: +82 51 510 2393; Fax: +82 51 514 4457. E-mail address: Supported by:
Sang-Soo Shin, Gil-Yong Yeom, Tae-Yang Kwak, Ik-Min Park. Microstructure and Mechanical Properties of TiB-Containing Al-Zn Binary Alloys[J]. J. Mater. Sci. Technol., 2016, 32(7): 653-659.
Optical microscopy images for the gravity-cast Al-35Zn alloys with (a) 0.0, (b) 0.01, (c) 0.05, and (d) 0.1% of TiB refiner contents (in 3% HF solution). An EBSD orientation map (inverse pole figure map) shows the grain distribution for the Al-35Zn alloys with (e) 0.0, (f) 0.01, (g) 0.05 and (h) 0.1% TiB refiner contents.
SEM images for the Al-35Zn cast alloys with (a) 0.0, (b) 0.01, (c) 0.05, and (d) 0.1% TiB refiner contents. Arrows point to the 100% Zn phase (in 3% HF solution).
SEM images of the α?+?η lamellar structure in the (a) Al-35Zn gravity cast alloy with 0.01 wt% TiB refiner contents, (b) Al-35Zn gravity cast alloy with 0.05% TiB refiner content, and (c) Al-35Zn gravity cast alloy with 0.1% TiB refiner content.
(a) Low-magnification optical images of the side surfaces for the deformed Al-35Zn-0.05 wt% TiB alloy sample showing the presence of abundant shear bands (the Al-35Zn 0.05% TiB content alloy is characterized with a large value of elongation to failure). (b) SEM image of the fracture surface after the tensile tests conducted on the Al-35Zn-0.05% TiB content sample.
Secondary electron micrographs recorded for the fracture surface of the Al-35Zn alloy with 0.05% TiB refiner content showing the presence of multiple dimples with sizes less than 25?µm.
Ultimate tensile strengths (MPa) vs. elongation (%) of various Al-Zn or Zn-Al based alloys. 1 Zn-4Al-1Cu[33], 2 ZA8[34], 3 Zn-40Al-2Cu-2.5Si[35], 4 Zn-40Al-2Cu-1Si[36], 5 Zn-27Al-2Cu-1Si[36], 6 Zn-27Al-2Cu[36], 7 Zn-40Al-4Cu[37], 8 Zn-40Al-2Cu-2Si[36], 9 ZA27[38], 10 Zn-40Al-3Cu[37], 11 ZA12[34], 12 Zn-40Al-2Cu[37], 13 Zn-40Al-1Cu[37], 14 ZA27+Zircon[39], 15 ZnAl4Y-0.5TiB[40], 16 Al-Zn-Mg-Ce[41], 17 Al-40Zn-5Cu[12], 18 Al-40Zn-3Cu-3Ni[42], 19 Al-40Zn-3Cu-2Ni[42], 20 Al-40Zn-3Cu-1Ni[42], 21 Al-40Zn-4Cu[12], 22 Al-40Zn-3Cu[12], 23 Al-40Zn-2Cu[12], 24 Al-40Zn-1Cu[12], 25 Al-40Zn[12], 26 Al-35Zn-based alloy, 27 Al-35Zn-0.01% TiB alloy, 28 Al-35Zn-0.05% TiB alloy, 29 Al-35Zn-0.1% TiB alloy.
[1] R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu. Mater. Lett, 58 (2004), pp. 2096-2101 [2] D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani. Mater. Sci. Eng. A, 610 (2014), pp. 414-426 [3] X. Hu, F. Jiang, F. Ai, H. Yan. J. Alloys Compd, 538 (2012), pp. 21-27 [4] S. Ji, D. Watson, Z. Fan, M. White. Mater. Sci. Eng. A, 556 (2012), pp. 824-833 [5] M.O. Pekguleryuz, X. Li, C.A. Aliravci. Metall. Mater. Trans. A, 40 (2009), pp. 1436-1456 [6] W.H. Suyitno, L. Kool, Katgerman. Metall. Mater. Trans. A, 36 (2005), pp. 1537-1546 [7] S.S. Shin, Y.H. Lim, E.S. Kim, K.M. Lim. Korean J. Met. Mater, 50 (2012), pp. 531-538 [8] S.S. Shin, K.M. Lim, I.M. Park. J. Alloys Compd, 671 (2016), pp. 517-526 [9] ASM Handbook. Alloy Phase Diagrams, vol. 3, ASM International, USA (1992) [10] S. Murphy, T. Savaskan. Wear, 98 (1984), pp. 151-161 [11] T. Savaskan, G. Purcek, S. Murphy. Wear, 252 (2002), pp. 693-703 [12] Y. Alemdag, T. Savaskankan. Tribol. Int, 42 (2009), pp. 176-182 [13] B. Closset, J.E. Gruzleski. AFS Trans, 90 (1982), pp. 453-464 [14] P.D. Hess, E.V. Blackman. AFS Trans, 83 (1975), pp. 87-90 [15] S.Z. Lu, A. Hellawell. Metall. Trans. A, 18 (1987), pp. 1721-1733 [16] T.V. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman. Metall. Mater. Trans. A, 41 (2010), pp. 2056-2066 [17] T.V. Atamanenko, D.G. Eskin, M. Sluiter, L. Katgerman. J. Alloys Compd, 509 (2011), pp. 57-60 [18] N. Pourkia, M. Emamy, H. Farhangi, S.H. SeyedEbrahimi. Mater. Sci. Eng. A, 527 (2010), pp. 5318-5325 [19] P. Schumacher, A.L. Greer. Mater. Sci. Eng. A, 226 (1997), pp. 794-798 [20] P.S. Mohanty, J.E. Gruzleski. Acta Mater, 44 (1996), pp. 3749-3760 [21] D.G. McCartney. Int. Mater. Rev, 34 (1989), pp. 247-260 [22] P. Schumacher, A.L. Greer. Mater. Sci. Eng. A, 181 (1994), pp. 1335-1339 [23] P. Schumacher, A.L. Greer. Light Metals (1995), pp. 869-877 [24] P. Schumacher, A.L. Greer. Proc. Conf. Light Metals (1996), pp. 745-753 [25] P. Schumacher, A.L. Greer, J. Worth, P.V. Evans, M.A. Kearns, P. Fisher, A.H. Green. Mater. Sci. Technol, 14 (1998), pp. 394-404 [26] D. Mirkovic, J. Grobner, R. Schmid-Fetzer. Acta Mater, 56 (2008), pp. 5214-5222 [27] L.C. Zhang, J. Das, H.B. Lu, C. Duhamel, M. Calin, J. Eckert. Scr. Mater, 57 (2007), pp. 101-104 [28] B.H. Kim, J.J. Jeon, K.C. Park, B.G. Park, Y.H. Park, I.M. Park. Int. J. Cast Met. Res, 21 (2008), pp. 186-192 [29] M. Wang, Y. Zhao, L. Zhou, D. Zhang. Mater. Lett, 58 (2004), pp. 3248-3252 [30] N. Hansen. Scr. Mater, 51 (2004), pp. 801-806 [31] D.G. Eskin, L. Suyitno. Prog. Mater. Sci, 49 (2004), pp. 629-711 [32] R. Kimura, H. Hatayama, K. Shinozaki, I. Murashima, J. Asada, M. Yoshida. Mater. Proc. Technol, 209 (2009), pp. 210-219 [33] D. Vojtech, J. Kubasek, J. Šerak, P. Novak. ActaBiomater, 7 (2011), pp. 3515-3522 [34] ASTM B86-09 Standard specification for zinc and zinc-aluminum (ZA) alloy foundry and die castings. [35] T. Savaskan, O. Bican. Mater. Sci. Eng. A, 404 (2005), pp. 259-269 [36] G. Pürçek, T. Savaskan, T. Küçükömeroglu, S. Murphy. Wear, 252 (2002), pp. 894-901 [37] T. Savaskan, M.S. Turhal. Mater. Charact, 51 (2003), pp. 259-270 [38] Metals Handbook. Vol. 2-Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (10th ed.)ASM International (1990) [39] S.C. Sharma, B.M. Girish, D.R. Somashekar, R. Kamath, B.M. Satish. Compos. Sci. Technol, 59 (1999), pp. 1805-1812 [40] J.H. Wang, J.F. Huang, X.P. Su, C.J. Wu. Mater. Des, 38 (2012), pp. 133-138 [41] H.K. Govindaraju, T. Jayaraj, P.R. Sadanandarao, C.S. Venkatesha. Mater. Des, 31 (2010), pp. S24-S29 [42] T. Savaskan, Y. Alemdag. Wear, 268 (2010), pp. 565-570 [43] S.S. Shin, E.S. Kim, G.Y. Yeom, J.C. Lee. Mater. Sci. Eng. A, 532 (2012), pp. 151-157 |
[1] | Luhan Hao, Xiang Ji, Guangqian Zhang, Wei Zhao, Mingyue Sun, Yan Peng. Carbide precipitation behavior and mechanical properties of micro-alloyed medium Mn steel [J]. J. Mater. Sci. Technol., 2020, 47(0): 122-130. |
[2] | Guanyi Jing, Wenpu Huang, Huihui Yang, Zemin Wang. Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting [J]. J. Mater. Sci. Technol., 2020, 48(0): 44-56. |
[3] | Haiwen Luo, Xiaohui Wang, Zhenbao Liu, Zhiyong Yang. Influence of refined hierarchical martensitic microstructures on yield strength and impact toughness of ultra-high strength stainless steel [J]. J. Mater. Sci. Technol., 2020, 51(0): 130-136. |
[4] | Xizhou Kai, Shuoming Huang, Lin Wu, Ran Tao, Yanjie Peng, Zemin Mao, Fei Chen, Guirong Li, Gang Chen, Yutao Zhao. High strength and high creep resistant ZrB2/Al nanocomposites fabricated by ultrasonic-chemical in-situ reaction [J]. J. Mater. Sci. Technol., 2019, 35(9): 2107-2114. |
[5] | Chunping Huang, Xin Lin, Fencheng Liu, Haiou Yang, Weidong Huang. High strength and ductility of 34CrNiMo6 steel produced by laser solid forming [J]. J. Mater. Sci. Technol., 2019, 35(2): 377-387. |
[6] | K. Zhang, Z.B. Wang. Strain-induced formation of a gradient nanostructured surface layer on an ultrahigh strength bearing steel [J]. J. Mater. Sci. Technol., 2018, 34(9): 1676-1684. |
[7] | Jian Liu, Jia Li, Xu Cheng, Huaming Wang. Microstructures and tensile properties of laser cladded AerMet100 steel coating on 300 M steel [J]. J. Mater. Sci. Technol., 2018, 34(4): 643-652. |
[8] | F.C.Liu, Y.Hovanski, M.P.Miles, C.D.Sorensen, T.W.Nelson. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34(1): 39-57. |
[9] | Man Zhu,Gencang Yang,Diqing Wan,Suling Cheng,Yaohe Zhou. Microstructures and Morphology Evolution of Icosahedral Phase of As-cast Mg 67.4 Zn 28.9Y3.7 Ternary Alloy Subjected to the Pouring Temperature [J]. J Mater Sci Technol, 2009, 25(04): 445-448. |
[10] | Zhongqi Yu,Yingke Hou,Haomin Jiang,Xinping Chen,Weigang Zhang. Investigation of Surface Damage in Forming of High Strength and Galvanized Steel Sheets [J]. J Mater Sci Technol, 2009, 25(03): 389-394. |
[11] | Weijun HUI, Yihong NIE, Han DONG, Yuqing WENG, Chunxu WANG. High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels [J]. J Mater Sci Technol, 2008, 24(05): 787-792. |
[12] | Byung-Hui Choi, Byung-Ki Choi. Evaluation of Mechanical Properties According to Nb Content of High Strength Steel Manufactured in VIM [J]. J Mater Sci Technol, 2008, 24(05): 793-796. |
[13] | Prapas Kunnam, Chaowalit Limmaneevichitr. Effect of Process Parameters on Morphology and Grain Refinement Efficiency of TiAl3 and TiB2 in Alumimum Casting [J]. J Mater Sci Technol, 2008, 24(01): 54-56. |
[14] | Kai LIU, Yiyin SHAN, Zhiyong YANG, Jianxiong LIANG, Lun LU, Ke YANG. Effect of Aging on Microstructure and Mechanical Property of 1900 MPa Grade Maraging Stainless Steel [J]. J Mater Sci Technol, 2007, 23(03): 312-318. |
[15] | Changzhong WU, Huaining CHEN, Jing CHEN, Quanhong LIN, Jianjun GUAN. Relief of Residual Stresses in 800 MPa Grade High Strength Steel Weldments by Explosion Treatment and its Effect on Mechanical Properties [J]. J Mater Sci Technol, 2006, 22(03): 387-391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||