J. Mater. Sci. Technol. ›› 2015, Vol. 31 ›› Issue (7): 699-707.DOI: 10.1016/j.jmst.2014.12.012
• Orginal Article • Previous Articles Next Articles
Abdul Waheed Anwara, Abdul Majeeda, Nadeem Iqbalb, *, Wasi Ullaha, Ahmad Shuaiba, Usman Ilyasa, Fozia Bibic, Hafiz Muhammad Rafiquec
Received:
2014-10-02
Online:
2015-07-20
Published:
2015-07-23
Contact:
*Corresponding author. Ph.D. E-mail address: Abdul Waheed Anwar, Abdul Majeed, Nadeem Iqbal, Wasi Ullah, Ahmad Shuaib, Usman Ilyas, Fozia Bibi, Hafiz Muhammad Rafique. Specific Capacitance and Cyclic Stability of Graphene Based Metal/Metal Oxide Nanocomposites: A Review[J]. J. Mater. Sci. Technol., 2015, 31(7): 699-707.
(a) CV curves of Fe3O4/RGO (FG) composite with different amounts of RGO at different scan rates, (b) specific capacitance of FG-0.2, FG-0.4 and FG-0.8 as a function of the scan rate, (c) galvanostatic charge/discharge curves of FG-0.8 at 0.5, 1, 3, 5 and 10 A g-1, (d) cyclic performance of FG-0.8 and pure Fe3O4 at a scan rate of 100 mV s-1[53].
(a) CV of 90% MnO-10% mw RGO asymmetric supercapacitor at various scan rates, (b) galvanostatic charge/discharge tests for varying current rates, (c) interfacial capacity versus cycle number at a current density of 0.5 A g-1[62].
(a) Cyclic voltammograms of Ni(OH)2/Ni/graphene at various scan rates, (b) galvanostatic charge/discharge curves of Ni(OH)2/Ni and Ni(OH)2/Ni/graphene at a current density of 0.5 A g-1[76].
[1] J. Chen, C. Li, G.Q. Shi, J. Phys. Chem. Lett. , 4 (2013), pp. 1244-1253 [2] M. Vangari, T. Pryor, L. Jiang, J. Energy Eng. , 139 (2013), pp. 72-79 [3] A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources , 157 (2006), pp. 11-27 [4] E. Frackowiak, F. Beguin, Carbon , 39 (2001), pp. 937-950 [5] M. Wissler, J. Power Sources , 156 (2006), pp. 142-150 [6] H. Pan, J.Y. Li, Y.P. Feng, Nanoscale Res. Lett. , 5 (2010), pp. 654-668 [7] Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. , 22 (2010), pp. 3906-3924 [8] F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics , 4 (2010), pp. 611-622 [9] M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Mater. Res. Bull. , 59 (2014), pp. 323-328 [10] S. Bai, X.P. Shen, RSC Adv. , 2 (2012), pp. 64-98 [11] S. Park, R.S. Ruoff, Nat. Nanotechnol. , 4 (2009), pp. 217-224 [12] K.H. Liao, A. Mittal, S. Bose, C. Leighton, K.A. Mkhoyan, C.W. Macosko, ACS Nano , 5 (2011), pp. 1253-1258 [13] Z. Xu, Y. Bando, L. Liu, W.L. Wang, X.D. Bai, D. Golberg, ACS Nano , 5 (2011), pp. 4401-4406 [14] Y. Zhu, D.K. James, J.M. Tour, Adv. Mater. , 24 (2012), pp. 4924-4955 [15] N.O. Weiss, H.L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X.F. Duan, Adv. Mater. , 24 (2012), pp. 5782-5825 [16] J.A. Yan, L. Xian, M.Y. Chou, Phys. Rev. Lett. , 103 (2009), p. 086802 [17] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano , 4 (2010), pp. 4806-4814 [18] C. Zhou, S.H.o Chen, J.Z. Lou, J.H. Wang, Q.J. Yang, C.R. Liu, D.P. Huang, T.H. Zhu, Nanoscale Res. Lett. , 9 (2014), pp. 1-9 [19] P. Avouris, C. Dimitrakopoulos, Mater. Today , 15 (2012), pp. 86-97 [20] S. Sheshmani, R. Amini, Carbohyd. Polym. , 95 (2013), pp. 348-359 [21] R. Ramachandran, V. Mani, S.M. Chen, R. Saraswathi, B.S. Lou, Int. J. Electrochem. Sci. , 8 (2013), pp. 11680-11694 [22] F. Liu, C.W. Lee, J.S. Im, J. Nanomater , 2013 (2013), pp. 1-11 [23] C.L. Tan, X. Huang, H. Zhang, Mater. Today , 16 (2013), pp. 29-36 [24] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. , 56 (2011), pp. 1178-1271 [25] D. Krishnan, F. Kim, J. Luo, R. Cruz-Silva, L.J. Cote, H.D. Jang, J. Huang, Nano Today , 7 (2012), pp. 137-152 [26] A.K. Mishra, S. Ramaprabhu, J. Phys. Chem. C , 115 (2011), pp. 14006-14013 [27] H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, J.B. Baek, Nano Energy , 1 (2012), pp. 534-551 [28] C.G. Liu, Z.N. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. , 10 (2010), pp. 4863-4868 [29] X.H. Xia, J.P. Tu, Y.Q. Zhang, J. Chen, X.L. Wang, C.D. Gu, C. Guan, J.S. Luo, H.J. Fan, Chem. Mater. , 24 (2012), pp. 3793-3799 [30] Z.S. Wu, K. Parvez, X.L. Feng, K. Mullen, Nat Commun. , 4 (2013), p. 2487 [31] W. Hong, J.Q. Wang, P.W. Gong, J.F. Sun, L.Y. Niu, Z.G. Yang, Z.F. Wang, S.R. Yang, J. Power Sources , 270 (2014), pp. 516-525 [32] H. Chen, L.F. Hu, M. Chen, Y. Yan, L.M. Wu, Adv. Funct. Mater. , 24 (2014), pp. 934-942 [33] Y.W. Cheng, H.B. Zhang, S.T. Lu, C.V. Varanasi, J. Liu, Nanoscale , 5 (2013), pp. 1067-1073 [34] L. Zheng, G. Zhang, M. Zhang, S. Guo, Z.H. Liu, J. Power Sources , 201 (2012), pp. 376-381 [35] A. Bello, M. Fabiane, D. Dodoo-Arhin, K.I. Ozoemena, N. Manyala, J. Phys. Chem. Solids , 75 (2014), pp. 109-114 [36] Z.L. Mo, P.W. Liu, R.B. Guo, Z.P. Deng, Y.X. Zhao, Y. Sun, Mater. Lett. , 68 (2012), pp. 416-418 [37] S. Chen, J.W. Zhu, X. Wang, J. Phys. Chem. , 114 (2010), pp. 11829-11834 [38] C.M. Zhao, X. Wang, S.M. Wang, Y.Y. Wang, Y.X. Zhao, W.T. Zheng, Int. J. Hydrogen Energy , 37 (2012), pp. 11846-11852 [39] U.M. Patil, S.C. Lee, J.S. Sohn, S.B. Kulkarni, K.V. Guravb, J.H. Kim, J.H. Kim, Electrochim. Acta , 129 (2014), pp. 334-342 [40] G.Y. He, J.H. Li, H.Q. Chen, J. Shi, X.Q. Sun, S. Chen, X. Wang, Mater. Lett. , 82 (2012), pp. 61-63 [41] Q. Li, X.N. Hu, Q. Yang, Z. Yan, L.P. Kang, Z.B. Lei, Z.P. Yang, Z.H. Liu, Electrochim. Acta , 119 (2014), pp. 184-191 [42] Z.P. Li, J.Q. Wang, L.Y. Niu, J.F. Sun, P.W. Gong, W. Hong, L.M. Ma, S.R. Yang, J. Power Sources , 245 (2014), pp. 224-231 [43] B. Wanga, Y. Wang, J. Park, H. Ahn, G.X. Wang, J. Alloy. Compd. , 509 (2011), pp. 7778-7783 [44] Z.X. Song, Y.J. Zhang, W. Liu, S. Zhang, G.C. Liu, H.Y. Chen, J.S. Qiu, Electrochim. Acta , 112 (2013), pp. 120-126 [45] W. Deng, W. Lan, Y.R. Sun, Q. Su, E.Q. Xie, Appl. Surf. Sci. , 305 (2014), pp. 433-438 [46] E. Jokar, A.I. zad, S. Shahrokhian, Int. J. Hydrogen Energy , 39 (2014), pp. 21068-21075 [47] A. Pendashteh, M.F. Mousavia, M.S. Rahmanifar, Electrochim. Acta , 88 (2013), pp. 347-357 [48] X.M. Dong, K. Wang, C.J. Zhao, X.Z. Qian, S. Chen, Z. Li, H.K. Liu, S.X. Dou, J. Alloy. Compd. , 586 (2014), pp. 745-753 [49] Q.X. Low, G.W. Ho, Nano Energy , 5 (2014), pp. 28-35 [50] Z. Wang, C.Y. Ma, H.L. Wang, Z.H. Liu, Z.P. Hao, J. Alloy. Compd. , 552 (2013), pp. 486-491 [51] W.H. Khoh, J.D. Hong, Eng. Aspects , 436 (2013), pp. 104-112 [52] Q.H. Wang, L.F. Jiao, H.M. Du, Y.J. Wang, H.T. Yuan, J. Power Sources , 245 (2014), pp. 101-106 [53] T. Qi, J.J. Jiang, H.C. Chen, H.Z. Wan, L. Miao, L. Zhang, Electrochim. Acta , 114 (2013), pp. 674-680 [54] E.C. Vermisoglou, E. Devlin, T. Giannakopoulou, G. Romanos, N. Boukos, V. Psycharis, C. Lei, C. Lekakou, D. Petridis, C. Trapalis, J. Alloy. Compd. , 590 (2014), pp. 102-109 [55] S.D. Perera, A.D. Liyanage, N. Nijem, J.P. Ferraris, Y.J. Chabal, K.J. Balkus Jr., J. Power Sources , 230 (2013), pp. 130-137 [56] H.L. Li, J. Wei, Y.N. Qian, J.L. Zhang, J. Yu, G.S. Wang, G.W. Xu, Colloid Surf. A-Physicochem. Eng. Asp , 449 (2014), pp. 148-156 [57] M.S. Wu, C.J. Lin, C.L. Ho, Electrochim. Acta , 81 (2012), pp. 44-48 [58] L.L. Zhang, T.X. Wei, W.J. Wang, X.S. Zhao, Microporous Mesoporous Mat. , 123 (2009), pp. 260-267 [59] Y.F. Fan, X.D. Zhang, Y.S. Liu, Q. Cai, J.M. Zhang, Mater. Lett. , 95 (2013), pp. 153-156 [60] B. Wang, J. Park, C.Y. Wang, H. Ahn, G.X. Wang, Electrochim. Acta , 55 (2010), pp. 6812-6817 [61] W.H. Cai, T. Lai, W.L. Dai, J.S. Ye, J. Power Sources , 255 (2014), pp. 170-178 [62] D. Antiohos, K. Pingmuang, M.S. Romano, S. Beirne, T. Romeo, P. Aitchison, A. Minettd, G. Wallacea, S. Phanichphant, J. Chen, Electrochim. Acta , 101 (2013), pp. 99-108 [63] B. Li, Y.S. Fu, H. Xia, X. Wang, Mater. Lett. , 122 (2014), pp. 193-196 [64] J.Y. Cao, Y.M. Wang, Y. Zhou, J.H. Ouyang, D.C. Jia, L.X. Guo, J. Electroanal. Chem. , 689 (2013), pp. 201-206 [65] Y. Liu, D. Yan, Y.H. Li, Z.G. Wu, R.F. Zhuo, S.K. Li, J.J. Feng, J. Wang, P.X. Yan, Z.R. Geng, Electrochim. Acta , 117 (2014), pp. 528-533 [66] Q. Yang, Q. Li, Z. Yan, X.H. Hua, L.P. Kang, Z.B. Lei, Z.H. Liu, Electrochim. Acta , 129 (2014), pp. 237-244 [67] Y. Li, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, J. Phys. Chem. C , 116 (2012), pp. 25226-25232 [68] S.X. Deng, D. Sun, C.H. Wu, H. Wang, J.B. Liu, Y.X. Sun, H. Yan, Electrochim. Acta , 111 (2013), pp. 707-712 [69] G.H. Yu, L.B. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. Mc Donough, X. Cui, Y. Cui, Z.A. Bao, Nano Lett. , 11 (2011), pp. 2905-2911 [70] Q.Q. Tang, M.Q. Sun, S.M. Yu, G.C. Wang, Electrochim. Acta , 125 (2014), pp. 488-496 [71] H.F. Song, X.H. Li, Y.L. Zhang, H. Wang, H.Y. Li, J.M. Huang, Ceram. Int. , 40 (2014), pp. 1251-1255 [72] M.S. Wu, Y.H. Fu, Carbon , 60 (2013), pp. 236-245 [73] K.H. Ye, Z.Q. Liu, C.W. Xu, N. Li, Y.B. Chen, Y.Z. Su, Inorg. Chem. Commun. , 30 (2013), pp. 1-4 [74] Y.H. Xiao, Y.B. Cao, Y.Y. Gong, A.Q. Zhang, J.H. Zhao, S.M. Fang, D.Z. Jia, F. Li, J. Power Sources , 246 (2014), pp. 926-933 [75] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Carbon , 49 (2011), pp. 2917-2925 [76] T.T. Liu, G.J. Shao, M.T. Ji, Mater. Lett. , 122 (2014), pp. 273-276 [77] Z.C. Xing, Q.X. Chu, X.B. Ren, J.Q. Tian, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, X.P. Sun, Electrochem. Commun. , 32 (2013), pp. 9-13 [78] L.Y. Niu, J.Q. Wang, W. Hong, J.F. Sun, Z.J. Fan, X.Y. Ye, H.G. Wang, S.R. Yang, Electrichim. Acta , 123 (2014), pp. 560-568 [79] B. Zhao, H. Zhuang, T. Fang, Z. Jiao, R.Z. Liu, X.T. Ling, B. Lu, Y. Jiang, J. Alloy. Compd. , 597 (2014), pp. 291-298 [80] X.J. Liu, X. Qi, Z. Zhang, L. Ren, Y.D. Liu, L.J. Meng, K. Huang, J.X. Zhong, Ceram. Int. , 40 (2014), pp. 8189-8193 [81] B.Q. Yuan, C.Y. Xu, D.H. Deng, Y. Xing, L. Liu, H. Pang, D.J. Zhang, Electrochim. Acta , 88 (2013), pp. 708-712 [82] Z. Wang, X. Zhang, J.H. Wang, L.D. Zou, Z.T. Liu, Z.P. Hao, J. Colloid Interf. Sci. , 396 (2013), pp. 251-257 [83] X.J. Zhu, H.L. Dai, J. Hu, L. Ding, L. Jiang, J. Power Sources , 203 (2012), pp. 243-249 [84] H.T. Zhang, X. Zhang, D.C. Zhang, X.Z. Sun, H. Lin, C.H. Wang, Y.W. Ma, J. Phys. Chem. B , 117 (2013), pp. 1616-1627 [85] W. Li, Y.F. Bu, H.L. Jin, J. Wang, W.M. Zhang, S. Wang, J.C. Wang, Energy Fuels , 27 (2013), pp. 6304-6310 [86] Y. Jiang, D.D. Chen, J.S. Song, Z. Jiao, Q.L. Maa, H.J. Zhang, L.L. Cheng, B. Zhao, Y.L. Chu, Electrochim. Acta , 91 (2013), pp. 173-178 [87] G.Y. He, L. Wang, H.Q. Chen, X.Q. Sun, X. Wang, Mater. Lett. , 98 (2013), pp. 164-167 [88] Y.M. Chen, Z.D. Huang, H.Y. Zhang, Y.T. Chen, Z.D. Cheng, Y.B. Zhong, Y.P. Ye, X.L. Lei, Int. J. Hydrogen Energy , 39 (2014), pp. 16171-16178 [89] K.J. Huang, L. Wang, Y.J. Liu, Y.M. Liu, H.B. Wang, T. Gan, L.L. Wang, Int. J. Hydrogen Energy , 38 (2013), pp. 14027-14034 [90] N. Lin, J.H. Tian, Z.Q. Shan, K. Chen, W.M. Liao, Electrochim. Acta , 99 (2013), pp. 219-224 [91] W. Wang, S.R. Guo, I. Lee, K. Ahmed, J.B. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci. Rep. , 4 (2014), p. 4452 [92] L. Oakes, A. Westover, J.W. Mares, S. Chatterjee, W.R. Erwin, R. Bardhan, S.M. Weiss, C.L. Pint, Sci. Rep. , 3 (2013), p. 3020 [93] A. Ramadoss, S.J. Kim, Carbon , 63 (2013), pp. 434-445 [94] Z.J. Li, T.Q. Chang, G.Q. Yun, J. Guo, J. Alloy. Compd. , 586 (2014), pp. 353-359 [95] T. Lu, Y.P. Zhang, H.B. Li, L.K. Pan, Y.L. Li, Z. Sun, Electrochim. Acta , 55 (2010), pp. 4170-4173 [96] C.T. Hsieh, W.Y. Lee, C.E. Lee, H. Teng, J. Phys. Chem. C , 118 (2014), pp. 15146-15153 [97] Y. Cai, Y. Wang, S.J. Deng, G. Chen, Q. Li, B.Q. Han, R. Han, Y.D. Wang, Ceram. Int. , 40 (2014), pp. 4109-4116 [98] S. Ratha, C.S. Rout, Appl. Mater. Interfaces , 5 (2013), pp. 11427-11433 [99] T. Lu, L.K. Pan, H.B. Li, G. Zhu, T. Lv, X.J. Liu, Z. Sun, T. Chen, D.H.C. Chua, J. Alloy. Compd. , 509 (2011), pp. 5488-5492 [100] Z.J. Li, Z.H. Zhou, G.Q. Yun, K. Shi, X.W. Lv, B.C. Yang, Nanoscale Res. Lett. , 8 (2013), p. 473 [101] H.D. Zeng, Y. Cao, S.F. Xie, J.H. Yang, Z.H. Tang, X.Y. Wang, L.Y. Sun, Nanoscale Res. Lett. , 8 (2013), p. 133 [102] Y. Haldoraia, W. Voit, J.J. Shim, Electrochim. Acta , 120 (2014), pp. 65-72 [103] Y.P. Zhang, H.B. Li, L.K. Pan, T. Lu, Z. Sun, J. Electrochim. Acta , 634 (2009), pp. 68-71 [104] Y.L. Chen, Z.A. Hu, Y.Q. Chang, H.W. Wang, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, J. Phys. Chem. C , 115 (2011), pp. 2563-2571 [105] A. Prakash, D. Bahadur, Appl. Mater. Interfaces , 6 (2014), pp. 1394-1405 [106] J. Wang, Z. Gao, Z.S. Li, B. Wang, Y.X. Yan, Q. Liu, T. Mann, M.L. Zhang, Z.H. Jiang, J. Solid State Chem. , 184 (2011), pp. 1421-1427 |
[1] | Weiwei Xiao, Na Ni, Xiaohui Fan, Xiaofeng Zhao, Yingzheng Liu, Ping Xiao. Ambient flash sintering of reduced graphene oxide/zirconia composites: Role of reduced graphene oxide [J]. J. Mater. Sci. Technol., 2021, 60(0): 70-76. |
[2] | Tao Liu, Jiahao Liu, Liuyang Zhang, Bei Cheng, Jiaguo Yu. Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor [J]. J. Mater. Sci. Technol., 2020, 47(0): 113-121. |
[3] | Guoxiang Pan, Feng Cao, Yujian Zhang, Xinhui Xia. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 55(0): 144-151. |
[4] | Geng He, Feifei Qin, Chunxiang Xu, Chinhua Wang, Yu Xu, Bing Cao, Ke Xu. Double-triangular whispering-gallery mode lasing from a hexagonal GaN microdisk grown on graphene [J]. J. Mater. Sci. Technol., 2020, 53(0): 140-145. |
[5] | Yongjin Zou, Xi Zhang, Jing Liang, Cuili Xiang, Hailiang Chu, Huanzhi Zhang, Fen Xu, Lixian Sun. Encapsulation of hollow Cu2O nanocubes with Co3O4 on porous carbon for energy-storage devices [J]. J. Mater. Sci. Technol., 2020, 55(0): 182-189. |
[6] | Kritesh Kumar Gupta, Tanmoy Mukhopadhyay, Aditya Roy, Sudip Dey. Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers [J]. J. Mater. Sci. Technol., 2020, 50(0): 44-58. |
[7] | Myung-Sic Chae, Tae Ho Lee, Kyung Rock Son, Tae Hoon Park, Kyo Seon Hwang, Tae Geun Kim. Electrochemically metal-doped reduced graphene oxide films: Properties and applications [J]. J. Mater. Sci. Technol., 2020, 40(0): 72-80. |
[8] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[9] | Tao Liu, Caizhen Zhu, Wei Wu, Kai-Ning Liao, Xianjing Gong, Qijun Sun, Robert K.Y. Li. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices [J]. J. Mater. Sci. Technol., 2020, 45(0): 241-247. |
[10] | Tielong Han, Enzuo Liu, Jiajun Li, Naiqin Zhao, Chunnian He. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study [J]. J. Mater. Sci. Technol., 2020, 46(0): 21-32. |
[11] | Yiwen Hong, Jingli Xu, Jin Suk Chung, Won Mook Choi. Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors [J]. J. Mater. Sci. Technol., 2020, 58(0): 73-79. |
[12] | Youzuo Hu, Hongyuan Zhao, Ming Tan, Jintao Liu, Xiaohui Shu, Meiling Zhang, Shanshan Liu, Qiwen Ran, Hao Li, Xingquan Liu. Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance [J]. J. Mater. Sci. Technol., 2020, 55(0): 173-181. |
[13] | Iftikhar Ahmad, Mohammad Islam, Nuha Al Habis, Shahid Parvez. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics [J]. J. Mater. Sci. Technol., 2020, 40(0): 135-145. |
[14] | Poulami Hota, Milon Miah, Saptasree Bose, Diptiman Dinda, Uttam K. Ghorai, Yan-Kuin Su, Shyamal K. Saha. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application [J]. J. Mater. Sci. Technol., 2020, 40(0): 196-203. |
[15] | Tingmin Di, Liuyang Zhang, Bei Cheng, Jiaguo Yu, Jiajie Fan. CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production [J]. J. Mater. Sci. Technol., 2020, 56(0): 170-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||