J. Mater. Sci. Technol. ›› 2023, Vol. 168: 169-184.DOI: 10.1016/j.jmst.2023.04.073
• Review Article • Previous Articles Next Articles
Anuj Kumara,*, Mohd Ubaidullahb, Guoxin Zhangc, Jasvinder Kauri, Saira Ajmald, Mudassir Hasanh, Krishna Kumar Yadavf,g, Hafiz M. Adeel Sharif*, Ram K. Guptae,*, Ghulam Yasind,*
Received:
2023-03-24
Revised:
2023-04-23
Accepted:
2023-04-27
Published:
2024-01-01
Online:
2023-12-25
Contact:
*E-mail addresses: anuj.kumar@gla.ac.in (A. Kumar), hmadeelcmc@hotmail.com (H.M.A. Sharif), ramguptamsu@gmail.com (R.K. Gupta), yasin.bzu@hotmail.com , yasin@mail.buct.edu.cn (G. Yasin)
Anuj Kumar, Mohd Ubaidullah, Guoxin Zhang, Jasvinder Kaur, Saira Ajmal, Mudassir Hasan, Krishna Kumar Yadav, Hafiz M. Adeel Sharif, Ram K. Gupta, Ghulam Yasin. Smart tailoring of molecular catalysts: Mounting approach to oxygen reduction reaction[J]. J. Mater. Sci. Technol., 2023, 168: 169-184.
[1] F. Razi, I. Dincer, Renew. Sust. Energ. Rev. 168(2022) 112763. [2] J. Yang, D.W. Kang, H. Kim, B. Hwang, J.W. Lee, Chem. Eng. J. 451(2023) 138909. [3] Z. Li, A. Kumar, N. Liu, M. Cheng, C. Zhao, X. Meng, H. Li, Y. Zhang, Z. Liu, G. Zhang, J. Mater. Chem. A 10 (2022) 14355-14363. [4] G. Yasin, S. Ibrahim, S. Ajmal, S. Ibraheem, S. Ali, A.K. Nadda, G. Zhang, J. Kaur, T. Maiyalagan, R.K. Gupta, Coord. Chem. Rev. 469(2022) 214669. [5] S.D. Bhoyate, J. Kim, F.M. de Souza, J.Lin, E. Lee, A. Kumar, R.K. Gupta, Coord. Chem. Rev. 474(2023) 214854. [6] Y. Wang, X. Zheng, D. Wang, Nano Res. 15(2022) 1730-1752. [7] G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma, K. Chu, Angew. Chem.-Int. Edit. 62 (2023) e20230 0 054. [8] H.J. Chen, R. Wang, Y.L. Yang, X.L. Shi, S. Lu, Z.G. Chen, Prog. Nat. Sci. 31(2021) 858-864. [9] G. Zhou, G. Liu, X. Liu, Q. Yu, H. Mao, Z. Xiao, L. Wang, Adv. Funct. Mater. 32(2022) 2107608. [10] R. Jasinski, J. Electrochem. Soc. 112(1965) 526. [11] J. Van Veen, J. Van Baar, C. Kroese, J. Coolegem, N. De Wit, H. Colijn, Ber. Bunsenges. Phys. Chem. 85(1981) 693-700. [12] J.H. Zagal, M.A. Páez, J. Silva, in: N4-Macrocyclic Metal Complexes, Springer Verlag, 2006, pp. 41-82. [13] A. Kumar, G. Zhang, W. Liu, X. Sun, J. Electroanal. Chem. 922(2022) 116799. [14] A. Kumar, G. Yasin, S. Ajmal, S. Ali, M.A. Mushtaq, M.M. Makhlouf, T.A. Nguyen, P. Bocchetta, R.K. Gupta, S. Ibraheem, Int. J. Hydrog. Energy 47 (2022) 17621-17629. [15] J.R. van Veen, C. Visser, Electrochim. Acta 24 (1979) 921-928. [16] Y. Wang, Z. Zhang, X. Zhang, Y. Yuan, Z. Jiang, H. Zheng, Y.G. Wang, H. Zhou, Y. Liang, CCS Chem. 4(2022) 228-236. [17] X. Luo, R. Abazari, M. Tahir, W.K. Fan, A. Kumar, T. Kalhorizadeh, A.M. Kirillov, A.R.Amani-Ghadim, J.Chen, Y. Zhou, Coord. Chem. Rev. 461(2022) 214505. [18] A. Kumar, S. Ibraheem, T.A. Nguyen, R.K. Gupta, T. Maiyalagan, G. Yasin, Coord. Chem. Rev. 446(2021) 214122. [19] R. Li, D. Wang, Nano Res. 15(2022) 6888-6923. [20] A. Kumar, V.K. Vashistha, D.K. Das, Coord. Chem. Rev. 431(2021) 213678. [21] C. Costentin, J.M. Savéant, Nat. Rev. Chem. 1(2017) 1-8. [22] S. Bhunia, A. Ghatak, A. Dey, Chem. Rev. 122(2022) 12370-12426. [23] E. Cook, C. Machan, Chem. Commun. 84(2022) 11746-11761. [24] I. Soni, P. Kumar, G.K. Jayaprakash, Coord. Chem. Rev. 472(2022) 214782. [25] X. Wang, L. Guo, Z. Xie, X. Peng, X. Yu, X. Yang, Z. Lu, X. Zhang, L. Li, Appl. Surf. Sci. 606(2022) 154749. [26] J.S. Bates, M.R. Johnson, F. Khamespanah, T.W. Root, S.S. Stahl, Chem. Rev. 123(2022) 6233-6256. [27] C. Costentin, H. Dridi, J.M. Savéant, J. Am. Chem.Soc. 137(2015) 13535-13544. [28] C. Costentin, J.M. Savéant, ChemElectroChem 1 (2014) 1226-1236. [29] C. Costentin, J.M. Savéant, J. Am. Chem.Soc. 140(2018) 16669-16675. [30] P.M. Osterberg, J.K. Niemeier, C.J. Welch, J.M. Hawkins, J.R. Martinelli, T.E. Johnson, T.W. Root, S.S. Stahl, Org. Process. Res. Dev. 19(2015) 1537-1543. [31] D.J. Wasylenko, C. Rodríguez, M.L. Pegis, J.M. Mayer, J. Am. Chem.Soc. 136(2014) 12544-12547. [32] M.L. Pegis, C.F. Wise, D.J. Martin, J.M. Mayer, Chem. Rev. 118(2018) 2340-2391. [33] J.J. Warren, T.A. Tronic, J.M. Mayer, Chem. Rev. 110(2010) 6961-7001. [34] C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, J.Am. Chem. Soc. 134(2012) 11235-11242. [35] V. Artero, J.-M. Saveant, Energy Environ.Sci. 7(2014) 3808-3814. [36] J.A. Roberts, R.M. Bullock, Inorg. Chem. 52(2013) 3823-3835. [37] M.L. Pegis, J.A. Roberts, D.J. Wasylenko, E.A. Mader, A.M. Appel, J.M. Mayer, Inorg. Chem. 54(2015) 11883-11888. [38] Q. Liu, R. Liu, C. He, C. Xia, W. Guo, Z.L. Xu, B.Y. Xia, eScience 2 (2022) 453-466. [39] M.L. Pegis, B.A.McKeown, N.Kumar, K. Lang, D.J. Wasylenko, X.P. Zhang, S. Raugei, J.M. Mayer, ACS Cent. Sci. 2(2016) 850-856. [40] M.L. Helm, M.P. Stewart, R.M. Bullock, M.R. DuBois, D.L. DuBois, Science 333 (2011) 863-866. [41] W.A. Hoffert, J.A. Roberts, R.M. Bullock, M.L. Helm, Chem. Commun. 49(2013) 7767-7769. [42] C.T. Carver, B.D. Matson, J.M. Mayer, J. Am. Chem. Soc. 134 (2012) 54 4 4-54 47. [43] W.R. Barros, T. Ereno, A.C. Tavares, M.R. Lanza, ChemElectroChem 2 (2015) 714-719. [44] M.L. Pegis, C.F. Wise, B. Koronkiewicz, J.M. Mayer, J. Am. Chem. Soc. 139 (2017) 110 0 0-110 03. [45] F. Shi, L. Zhai, Q. Liu, J. Yu, S.P. Lau, B.Y. Xia, Z.L. Xu, J. Energy Chem. 76(2023) 127-145. [46] M. Che, Catal. Today 218 (2013) 162-171. [47] M. Koper, J. Solid State Electrochem. 17(2013) 339-344. [48] P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein J. Nanotechnol. 5(2014) 846-854. [49] A.R. Zeradjanin, J.P. Grote, G. Polymeros, K.J. Mayrhofer, Electroanalysis 28 (2016) 2256-2269. [50] J.M. Savéant, Chem. Rev. 108(2008) 2348-2378. [51] C. Costentin, J.M. Savéant, J. Am. Chem.Soc. 139(2017) 8245-8250. [52] C. Costentin, J.M. Savéant, ACS Appl. Mater. Interfaces 9 (2017) 19894-19899. [53] J.H. Zagal, M.T. Koper, Angew. Chem.-Int. Edit. 55(2016) 14510-14521. [54] J.H. Zagal, S. Specchia, P. Atanassov, Curr. Opin. Electrochem. 27(2021) 100683. [55] S. Specchia, P. Atanassov, J.H. Zagal, Curr. Opin. Electrochem. 27(2021) 100687. [56] A. Kumar, Y. Zhang, Y. Jia, W. Liu, X. Sun, Chinese J. Catal. 42(2021) 1404-1412. [57] J.H. Zagal, M. Gulppi, M. Isaacs, G. Cárdenas-Jirón, M.J. ś Aguirre, Electrochim. Acta 44 (1998) 1349-1357. [58] J. Ouyang, K. Shigehara, A. Yamada, F.C. Anson, J. Electroanal. Chem.Interfacial Electrochem. 297(1991) 4 89-4 98. [59] C. Shi, F.C. Anson, Inorg. Chem. 29(1990) 4298-4305. [60] H. Niu, C. Xia, L. Huang, S. Zaman, T. Maiyalagan, W. Guo, B. You, B.Y. Xia, Chin. J. Catal. 43(2022) 1459-1472. [61] S.B. Han, D.H. Kwak, H.S. Park, I.A. Choi, J.Y. Park, K.B. Ma, J.E. Won, D.H. Kim, S.J. Kim, M.C. Kim, ACS Catal. 6(2016) 5302-5306. [62] J.H. Dawson, Science 240 (1988) 433-439. [63] I.M. Rietjens, A.M. Osman, C. Veeger, O. Zakharieva, J. Antony, M. Grodzicki, A.X. Trautwein, J. Biol. Inorg.Chem. 1(1996) 372-376. [64] T.L. Poulos, J. Biol. Inorg.Chem. 1(1996) 356-359. [65] D.B. Goodin, J. Biol. Inorg.Chem. 1(1996) 360-363. [66] R.A. Matute, A. Toro-Labbé, M.P. Oyarzún, S. Ramirez, D.E. Ortega, K. Oyarce, N. Silva, J.H. Zagal, Electrochim. Acta 391 (2021) 138905. [67] D. Solomon, P. Peretz, M. Faraggi, J. Phys. Chem. C 86 (1982) 1842-1849. [68] R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim, Q. Li, N. Park, M. Liu, J. Cho, Nat. Commun. 4(2013) 1-7. [69] H. Lv, H. Guo, K. Guo, H. Lei, W. Zhang, H. Zheng, Z. Liang, R. Cao, Chin. Chem. Lett. 32(2021) 2841-2845. [70] A. van der Putten, A.Elzing, W. Visscher, E. Barendrecht, J. Electroanal. Chem. Interfacial Electrochem. 221(1987) 95-104. [71] E. Theodoridou, A. Jannakoudakis, P. Jannakoudakis, S. Antoniadou, J. Besen-hard, J.Appl. Electrochem. 22(1992) 733-737. [72] J.P. Randin, Electrochim. Acta 19 (1974) 83-85. [73] F. Beck, J. Appl. Electrochem. 7(1977) 239-245. [74] J.H. Zagal, Coord. Chem. Rev. 119(1992) 89-136. [75] J. Zagal, M. Paez, A. Tanaka, J. dos Santos Jr, C.Linkous, J. Electroanal. Chem. 339(1992) 13-30. [76] H. Abe, Y. Hirai, S. Ikeda, Y. Matsuo, H. Matsuyama, J. Nakamura, T. Matsue, H. Yabu, NPG Asia Mater. 11(2019) 1-12. [77] H. Zhang, S. Zhang, Y. Wang, J. Si, Y. Chen, L. Zhuang, S. Chen, ACS Appl. Mater. Interfaces 10 (2018) 28664-28671. [78] A. Kumar, G. Yasin, M. Tabish, D.K. Das, S. Ajmal, A.K. Nadda, G. Zhang, T. Maiyalagan, A. Saad, R.K. Gupta, J. Chem. Eng. 445(2022) 136784. [79] R. Venegas, F.J. Recio, J. Riquelme, K. Neira, J.F. Marco, I. Ponce, J.H. Zagal, F. Tasca, J. Mater. Chem. A 5 (2017) 12054-12059. [80] S. Sun, N. Jiang, D. Xia, J. Phys. Chem. C 115 (2011) 9511-9517. [81] Z. Shi, J. Zhang, J. Phys. Chem. C 111 (2007) 7084-7090. [82] H. He, Y. Lei, C. Xiao, D. Chu, R. Chen, G. Wang, J. Phys. Chem. C 116 (2012) 16038-16046. [83] C. Renault, C.P. Andrieux, R.T. Tucker, M.J. Brett, V.R. Balland, B. Limoges, J. Am. Chem.Soc. 134(2012) 6 834-6 845. [84] M.P. Frushicheva, M.J. Mills, P. Schopf, M.K. Singh, R.B. Prasad, A. Warshel, Curr. Opin. Chem. Biol. 21(2014) 56-62. [85] J.P. Klinman, Acc. Chem. Res. 40(2007) 325-333. [86] S. Fukuzumi, K. Okamoto, Y. Tokuda, C.P. Gros, R. Guilard, J. Am. Chem.Soc. 126(2004) 17059-17066. [87] L.M. Mirica, X. Ottenwaelder, T.D.P.Stack, Chem. Rev. 104(2004) 1013-1046. [88] E.A. Lewis, W.B. Tolman, Chem. Rev. 104(2004) 1047-1076. [89] A. Borovik, Acc. Chem. Res. 38(2004) 54-61. [90] K.M. Kadish, L. Frémond, J. Shen, P. Chen, K. Ohkubo, S. Fukuzumi, M. El Ojaimi, C.P. Gros, J.-M. Barbe, R.Guilard, Inorg. Chem. 48(2009) 2571-2582. [91] A. Kumar, K. Sun, X. Duan, S. Tian, X. Sun, Chem. Mater. 34(2022) 5598-5606. [92] J.P. Collman, R. Boulatov, C.J. Sunderland, L. Fu, Chem. Rev. 104(2004) 561-588. [93] J.P. Collman, Acc. Chem. Res. 10(1977) 265-272. [94] T.G. Spiro, M.Z. Zgierski, P.M. Kozlowski, Coord. Chem. Rev. 219(2001) 923-936. [95] E. Sigfridsson, U. Ryde, J. Biol. Inorg.Chem. 4(1999) 99-110. [96] C.Y. Yeh, C.J. Chang, D.G. Nocera, J. Am. Chem.Soc. 123(2001) 1513-1514. [97] C. Chang, Y. Liang, G. Aviles, S.M. Peng, J. Am. Chem.Soc. 117(1995) 4191-4192. [98] J.D. Soper, S.V. Kryatov, E.V.Rybak-Akimova, D.G. Nocera, J. Am. Chem. Soc. 129(2007) 5069-5075. [99] D.K. Dogutan, S.A. Stoian, R. McGuire Jr, M.Schwalbe, T.S. Teets, D.G. Nocera, J. Am. Chem. Soc. 133(2011) 131-140. [100] J. Rosenthal, D.G. Nocera, Acc. Chem. Res. 40(2007) 543-553. [101] W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797. [102] L.L. Chng, C.J. Chang, D.G. Nocera, Org. Lett. 5(2003) 2421-2424. [103] B. Zyska, M. Schwalbe, Chem. Commun. 49(2013) 3799-3801. [104] J.P. Collman, P.S. Wagenknecht, J.E. Hutchison, Angew. Chem.-Int. Edit. 33(1994) 1537-1554. [105] S. Fukuzumi, K. Okamoto, C.P. Gros, R. Guilard, J. Am. Chem.Soc. 126(2004) 10441-10449. [106] N. Koçyiğit, Ü.E. Özen, M. Özer, B. Salih, A.R. Özkaya, Ö. Bekaroğlu, Elec-trochim. Acta 233 (2017) 237-248. [107] J.P. Collman, C.S. Bencosme, C.E. Barnes, B.D. Miller, J. Am. Chem.Soc. 105(1983) 2704-2710. [108] N. Kobayashi, Y. Nishiyama, J. Phys. Chem. C 89 (1985) 1167-1170. [109] H. Jahnke, M. Schönborn, G. Zimmermann, Top Curr. Chem. 61(1976) 133-181. [110] M. Jahan, Q.L. Bao, K.P. Loh, J. Am. Chem.Soc. 134(2012) 6707-6713. [111] S.K. Kim, S. Jeon, Electrochem. Commun. 22(2012) 141-144. [112] Y. He, G.Q. Yu, Y. Naruta, J.G. Liu, Angew. Chem.-Int. Edit. 53(2014) 6659-6663. [113] A. Kumar, G. Yasin, V.K. Vashistha, D.K. Das, M.U. Rehman, R. Iqbal, Z. Mo, T.A. Nguyen, Y. Slimani, M.T. Nazir, W. Zhao, Diam. Relat. Mater. 113(2021) 108272. [114] P.B. Xi, Z.X. Liang, S.J. Liao, Int. J. Hydrog. Energy 37 (2012) 4606-4611. |
[1] | Na Li, Le Li, Jiawei Xia, Muhammad Arif, Shilong Zhou, Fengxiang Yin, Guangyu He, Haiqun Chen. Single-atom Co-N4 catalytic sites anchored on N-doped ordered mesoporous carbon for excellent Zn-air batteries [J]. J. Mater. Sci. Technol., 2023, 139(0): 224-231. |
[2] | Xiaoqiang Ji, Fan Yang, Yunzhu Du, Jing Li, Jianguo Li, Qiaodan Hu. Highly active and durable La0.6Ca0.4(CrMnFeCo2Ni)O3 high entropy perovskite oxide as electrocatalyst for oxygen evolution reaction in alkaline media [J]. J. Mater. Sci. Technol., 2023, 168(0): 71-78. |
[3] | Meiting Yang, Zhen Yao, Shuai Liu, Jun Wang, Anwei Sun, Haoran Xu, Guangming Yang, Ran Ran, Wei Zhou, Gang Xiao, Zongping Shao. Bismuth doped Sr2Fe1.5Mo0.5O6-δ double perovskite as a robust fuel electrode in ceramic oxide cells for direct CO2 electrolysis [J]. J. Mater. Sci. Technol., 2023, 164(0): 160-167. |
[4] | Xue Li, Xue Zhao, Jiapei Lv, Xiuxiu Jia, Shuxing Zhou, Yimin Huang, Fengqin Chang, Hucai Zhang, Guangzhi Hu. Self-supported porous copper oxide nanosheet arrays for efficient and selective electrochemical conversion of nitrate ions to nitrogen gas [J]. J. Mater. Sci. Technol., 2023, 137(0): 104-111. |
[5] | Rui Wang, Zihan Meng, Xuemin Yan, Tian Tian, Ming Lei, Rami Adel Pashameah, Hala M. Abo-Dief, Hassan Algadi, Nina Huang, Zhanhu Guo, Haolin Tang. Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries [J]. J. Mater. Sci. Technol., 2023, 137(0): 215-222. |
[6] | Hyeon Jeong Kim, Cheol Joo Moon, Seokhee Lee, Jayaraman Theerthagiri, Jong Wook Hong, Myong Yong Choi, Young Wook Lee. Modulating the synergy of Pd@Pt core-shell nanodendrites for boosting methanol electrooxidation kinetics [J]. J. Mater. Sci. Technol., 2023, 165(0): 153-160. |
[7] | Mufeng Yu, Yiming Tang, Yuxin Liao, Wanhan He, Xin-xin Lu, Xin Li. Defect-designed Mo-doped BiVO4 photoanode for efficient photoelectrochemical degradation of phenol [J]. J. Mater. Sci. Technol., 2023, 165(0): 225-234. |
[8] | Yunan Wang, Hao Yang, Zhe Zhang, Xiangying Meng, Tao Cheng, Gaowu Qin, Song Li. Far-from-equilibrium electrosynthesis ramifies high-entropy alloy for alkaline hydrogen evolution [J]. J. Mater. Sci. Technol., 2023, 166(0): 234-240. |
[9] | Hua-Jun Chen, Yan-Ling Yang, Xin-Xin Zou, Xiao-Lei Shi, Zhi-Gang Chen. Flexible hollow TiO2@CMS/carbon-fiber van der Waals heterostructures for simulated-solar light photocatalysis and photoelectrocatalysis [J]. J. Mater. Sci. Technol., 2022, 98(0): 143-150. |
[10] | Yunwei Liu, Zelin Chen, Chang Liu, Jinfeng Zhang, Wenbin Hu, Yida Deng. Exploiting H-induced lattice expansion in β-palladium hydride for enhanced catalytic activities toward oxygen reduction reaction [J]. J. Mater. Sci. Technol., 2022, 98(0): 205-211. |
[11] | Pengfei Zhou, Dong Liu, Yuyun Chen, Mingpeng Chen, Yunxiao Liu, Shi Chen, Chi Tat Kwok, Yuxin Tang, Shuangpeng Wang, Hui Pan. Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst [J]. J. Mater. Sci. Technol., 2022, 109(0): 267-275. |
[12] | Jun Mei, Qian Zhang, Hong Peng, Ting Liao, Ziqi Sun. Phase engineering activation of low-cost iron-containing sulfide minerals for advanced electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 111(0): 181-188. |
[13] | Jiakang Tian, Yongqing Shen, Peizhi Liu, Haixia Zhang, Bingshe Xu, Yanhui Song, Jianguo Liang, Junjie Guo. Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis [J]. J. Mater. Sci. Technol., 2022, 127(0): 1-18. |
[14] | Jing Li, Fan Yang, Yunzhu Du, Xiyang Cai, Qiaodan Hu, Junliang Zhang. Bi0.15Sr0.85Co0.8Fe0.2O3-δ perovskite: A novel bifunctional oxygen electrocatalyst with superior durability in alkaline media [J]. J. Mater. Sci. Technol., 2022, 108(0): 158-163. |
[15] | Derek Hao, Zhi-gang Chen, Monika Figiela, Izabela Stepniak, Wei Wei, Bing-Jie Ni. Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction [J]. J. Mater. Sci. Technol., 2021, 77(0): 163-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||