J. Mater. Sci. Technol. ›› 2023, Vol. 133: 154-164.DOI: 10.1016/j.jmst.2022.06.020
• Research article • Previous Articles Next Articles
Seung-Yong Leea,*(), Sita Chettrib, Ritupan Sarmahb, Chikako Takushimac, Jun-ichi Hamadac, Nobuo Nakadaa
Received:
2022-03-01
Revised:
2022-06-03
Accepted:
2022-06-12
Published:
2022-07-12
Online:
2022-07-12
Contact:
Seung-Yong Lee
About author:
E-mail address: lee.s.aw@m.titech.ac.jp (S.-Y. Lee).Seung-Yong Lee, Sita Chettri, Ritupan Sarmah, Chikako Takushima, Jun-ichi Hamada, Nobuo Nakada. Serrated flow accompanied with dynamic type transition of the Portevin-Le Chatelier effect in austenitic stainless steel[J]. J. Mater. Sci. Technol., 2023, 133: 154-164.
Empty Cell | Cr | Ni | Mn | Si | P | S | C | N | Fe |
---|---|---|---|---|---|---|---|---|---|
γ-STS | 19.3 | 13.5 | 0.8 | 0.04 | 0.004 | 0.0006 | 0.208 | 0.004 | Bal. |
Table 1. Chemical composition (wt.%) of the Fe-19Cr-13N-0.2C austenitic stainless steel used in this study.
Empty Cell | Cr | Ni | Mn | Si | P | S | C | N | Fe |
---|---|---|---|---|---|---|---|---|---|
γ-STS | 19.3 | 13.5 | 0.8 | 0.04 | 0.004 | 0.0006 | 0.208 | 0.004 | Bal. |
Fig. 3. (a) Stress vs. strain curves of specimens tested at temperatures ranging from 523 to 623 K at an applied strain rate of 10?4 s?1; (b) and (c) magnified images of the boxed segments in Fig. 3(a).
Fig. 5. Time evolution of strain-rate distribution on the gauge part at three temperatures. The nominal strain rate, $\dot{\varepsilon}^{DIC?L}$, along the tensile direction was evaluated along the central axis of the gauge part by high-temperature DIC and continuously displayed in a serial flow of testing time.
Fig. 6. Strain-rate distribution map showing A-type PLC band propagation in the gauge part of a test piece deformed at 523 K/10?4 s?1, as indicated by the dotted segment in Fig. 5. Each DIC image was acquired at the strain represented by the red circles in the stress-strain curve.
Fig. 7. Strain-rate distribution map showing B-type PLC band propagation in the gauge part of a test piece deformed at 623 K/10?4 s?1, as indicated by the dotted segment in Fig. 5. Each DIC image was acquired at the strain represented by the red circles in the stress-strain curve.
Fig. 8. Strain-rate distribution map showing (A+B)-type PLC band propagation in the gauge part of a test piece deformed at 573 K/10?4 s?1, as indicated by the dotted segment in Fig. 5. Each DIC image was acquired at the strain represented by the red circles in the stress-strain curve.
Fig. 9. Strain-rate distribution map showing C-type PLC band propagation in the gauge part of a test piece deformed at 623 K/10?4 s?1, as indicated by the dotted segment in Fig. 5. Each DIC image was acquired at the strain represented by the red circles in the stress-strain curve.
Fig. 11. (a) Map of global strain rate and deformation time. Three temperatures are colored in red for 523 K, blue for 573 K, and green for 623 K. Each serration type is presented by different symbols: squares for A-type, crosses for B-type, circles for C-type, and overlapping symbols for mixed type; (b) map of type transition of serration as a function of the global strain rate.
ρm (m−2) | ∼1012 | D0 (m2/s) | 1.5×10−5 |
---|---|---|---|
ρim (m−2) | ∼1014 | c | 0.1 |
ρc (m−2) | ∼1013 | λ (m) | 1×10−9 |
E* (GPa) | 131 | Q (J/mol) | 135,000 |
α | 0.6 | am (s−1) | 0.5 |
b (m) | 2.5×10−10 | ac (s−1) | 0.05 |
σy (GPa) | 0.14 | γ (s−1) | 5×10−4 |
θv0 (s−1) | 1 | β (m2/s) | 5×10−14 |
m0 | 3 | Γ | 5×109 |
p | 1 |
Table 2. Parameters used in AK model.
ρm (m−2) | ∼1012 | D0 (m2/s) | 1.5×10−5 |
---|---|---|---|
ρim (m−2) | ∼1014 | c | 0.1 |
ρc (m−2) | ∼1013 | λ (m) | 1×10−9 |
E* (GPa) | 131 | Q (J/mol) | 135,000 |
α | 0.6 | am (s−1) | 0.5 |
b (m) | 2.5×10−10 | ac (s−1) | 0.05 |
σy (GPa) | 0.14 | γ (s−1) | 5×10−4 |
θv0 (s−1) | 1 | β (m2/s) | 5×10−14 |
m0 | 3 | Γ | 5×109 |
p | 1 |
Fig. 12. (a) Time evolution of PLC band and (b) the corresponding global stress behavior with time as the PLC band evolves at a strain rate of 5.00 × 10?6 s?1. (a) and (b) indicate “jumping” PLC band and typical C-type serrated flow, respectively; (c) time evolution of PLC band and (d) the corresponding global stress behavior with time when the PLC band evolves at a strain rate of 6.25 × 10?6 s?1.
Fig. 13. (a) Time evolution of PLC band and (b) the corresponding global stress behavior with time when the PLC band evolves at a strain rate of 1.00 × 10?5 s?1. (a) and (b) indicate “hopping” PLC band and typical B-type serrated flow, respectively; (c) time evolution of PLC band and (d) the corresponding global stress behavior with time when the PLC band evolves at a strain rate of 1.63 × 10?6 s?1. (c) and (d) indicate “walking” PLC band and typical A-type serrated flow, respectively.
[1] |
A.H. Cottrell, Philos. Mag. 44 (1953) 829-832.
DOI URL |
[2] |
P.G. McCormick, Acta Metall. 20 (1972) 351-354.
DOI URL |
[3] | A. van den Beukel, Phys. Status Solidi A 30 (1975) 197-206. |
[4] |
A. van den Beukel, Acta Metall. 28 (1980) 965-969.
DOI URL |
[5] | P.G. McCormick, Trans. Indian Inst. Met. 39 (1986) 98-106. |
[6] | A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A 62 (1949) 49-62. |
[7] |
Y. Zhang, J.P. Liu, S.Y. Chen, X. Xie, P.K. Liaw, K.A. Dahmen, J.W. Qiao, Y.L. Wang, Prog. Mater. Sci. 90 (2017) 358-460.
DOI URL |
[8] |
A. Yilmaz, Sci. Technol. Adv. Mater. 12 (2011) 063001.
DOI URL |
[9] |
P. Rodriguez, Bull. Mater. Sci. 6 (1984) 653-663.
DOI URL |
[10] |
Z. Wang, J.W. Qiao, H. Tian, B.A. Sun, B.C. Wang, B.S. Xu, M.W. Chen, Appl. Phys. Lett. 107 (2015) 201902.
DOI URL |
[11] |
Y.S. Luo, Z. Wang, J. Eckert, J.W. Qiao, J. Appl. Phys. 129 (2021) 155109.
DOI URL |
[12] |
Q. Yu, P.A. Greaney, T.M. Evans, J.J. Kruzic, Int. J. Plast. 145 (2021) 103071.
DOI URL |
[13] |
D.P. Rao Palaparti, V. Ganesan, J. Christopher, G.V. Prasad Reddy, J. Mater. Eng. Perform. 30 (2021) 2074-2082.
DOI URL |
[14] |
H. Wang, C. Berdin, M. Maziere, S. Forest, C. Prioul, A. Parrot, P. Le-Delliou, Scr. Mater. 64 (2011) 430-433.
DOI URL |
[15] |
S. Fu, T. Cheng, Q. Zhang, Q. Hu, P. Cao, Acta Mater. 60 (2012) 6650-6656.
DOI URL |
[16] |
M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, K. Tsuzaki, Scr. Mater. 141 (2017) 20-23.
DOI URL |
[17] |
Y.C. Lin, H. Yang, X.M. Chen, D.D. Chen, Adv. Eng. Mater. 20 (2018) 1800234.
DOI URL |
[18] |
Y.C. Lin, H. Yang, Y.C. Xin, C.Z. Li, Mater. Charact. 144 (2018) 9-21.
DOI URL |
[19] |
H. Ait-Amokhtar, C. Fressengeas, Acta Mater. 58 (2010) 1342-1349.
DOI URL |
[20] |
M. Mehenni, H. Ait-Amokhtar, C. Fressengeas, Mater. Sci. Eng. A 756 (2019) 313-318.
DOI URL |
[21] |
X. Feng, G. Fischer, R. Zielke, B. Svendsen, W. Tillmann, Mater. Sci. Eng. A 539 (2012) 205-210.
DOI URL |
[22] |
K. Renard, S. Ryelandt, P.J. Jacques, Mater. Sci. Eng. A 527 (2010) 2969-2977.
DOI URL |
[23] |
H. Halim, D.S. Wilkinson, M. Niewczas, Acta Mater. 55 (2007) 4151-4160.
DOI URL |
[24] |
S.Y. Lee, C. Takushima, J. Hamada, N. Nakada, Acta Mater. 205 (2021) 116560.
DOI URL |
[25] |
M. Lebyodkin, Y. Brechet, Y. Estrin, L. Kubin, Acta Mater. 44 (1996) 4531-4541.
DOI URL |
[26] | R. Carroll, C. Lee, C.W. Tsai, J.W. Yeh, J. Antonagila, B.A.W. Brinkman, M. LeBlanc, X. Xie, S. Chen, P.K. Liaw, K.A. Dahmen, Sci. Rep. 5 (2015) 1-12. |
[27] |
H. Ait-Amokhtar, C. Fressengeas, Acta Mater. 58 (2010) 1342-1349.
DOI URL |
[28] |
H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, J. Fan, Acta Mater. 55 (2007) 2219-2228.
DOI URL |
[29] |
B. Klusemann, G. Fischer, T. Bolhlke, B. Svendsen, Int. J. Plast. 67 (2015) 192-196.
DOI URL |
[30] |
Y.C. Lin, H. Yang, D.G. He, J. Chen, Mater. Des. 183 (2019) 108122.
DOI URL |
[31] |
J. Kumar, R. Sarmah, G. Ananthakrishna, Phys. Rev. B 92 (2015) 144109.
DOI URL |
[32] |
R. Sarmah, G. Ananthakrishna, Phys. Rev. E 87 (2013) 052907.
DOI URL |
[33] |
R. Sarmah, G. Ananthakrishna, Acta Mater. 91 (2015) 192-201.
DOI URL |
[34] |
L.H. de Almeida, I. Le May, P.R.O Emygdio, Mater. Charact. 41 (1998) 137-150.
DOI URL |
[35] |
J. Mola, G. Luan, Q. Huang, C. Ullrich, O. Volkova, Y. Estrin, Acta Mater. 212 (2021) 116888.
DOI URL |
[36] |
K. Peng, K. Qian, W. Chen, Mater. Sci. Eng. A 379 (2004) 372-377.
DOI URL |
[37] |
L. Shi, D.O. Northwood, Acta Metall. Mater. 43 (1995) 453-460.
DOI URL |
[38] |
S.C. Ren, T.F. Morgeneyer, M. Maziere, S. Forest, G. Rousselier, Int. J. Plast. 136 (2021) 102880.
DOI URL |
[39] | M. Maziere, J. Besson, S. Forest, B. Tanguy, H. Chalons, F. Vogel, Comput. Meth- ods Appl. Mech. Eng. 199 (2010) 734-754. |
[40] | M. Zaiser, P. Hahner, Phys. Status Solidi B 199 (1997) 267-330. |
[41] | L.P. Kubin, C. Fressengeas, G. AnanthakrishnaIn: F.R.N. Nabarro, M.S.Duesbery (Eds.), in: Dislocation in Solids, 11, Elsevier, Amsterdam, 2002, pp. 101-192. |
[42] |
G. Ananthakrishna, M.S. Bharathi, Phys. Rev. E 70 (2004) 026111.
DOI URL |
[43] | K. Srikanth, A Dynamical Approach to Plastic Deformation of Nano-Scale Mate- rials: Nano and Micro-Indentation, Indian Institute of Science, 2016 PhD Thesis. |
[1] | Bashir S. Shariat, Yingchao Li, Hong Yang, Yunzhi Wang, Yinong Liu. On the Lüders band formation and propagation in NiTi shape memory alloys [J]. J. Mater. Sci. Technol., 2022, 116(0): 22-29. |
[2] | Li C.Q.,Xu D.K.,Wang B.J.,Sheng L.Y.,Han E.H.. Suppressing Effect of Heat Treatment on the Portevin-Le Chatelier Phenomenon of Mg-4%Li-6%Zn-1.2%Y Alloy [J]. J. Mater. Sci. Technol., 2016, 32(12): 1232-1238. |
[3] | Chenggang Tian, Chuanyong Cui, Ling Xu, Yuefeng Gu, Xiaofeng Sun. Dynamic Strain Aging in a Newly Developed Ni-Co-Base Superalloy with Low Stacking Fault Energy [J]. J. Mater. Sci. Technol., 2013, 29(9): 873-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||