J. Mater. Sci. Technol. ›› 2023, Vol. 133: 145-153.DOI: 10.1016/j.jmst.2022.05.038
• Research article • Previous Articles Next Articles
Liqi Lia, Wenjian Shena,b, Chenquan Yanga, Yuxi Doua, Xuehao Zhua, Yao Donga,b, Juan Zhaoc,*(), Junyan Xiaod, Fuzhi Huanga,b, Yi-Bing Chenga,b, Jie Zhonga,b,**(
)
Received:
2022-02-10
Revised:
2022-04-15
Accepted:
2022-05-03
Published:
2022-06-18
Online:
2022-06-18
Contact:
Juan Zhao,Jie Zhong
About author:
E-mail addresses: juan.zhao@whut.edu.cn (J. Zhao), State Key Laboratory of Advanced Technology of Ma- terials Composite Technology, Wuhan University of Technology, Wuhan 430070, China.jie.zhong@whut.edu.cnLiqi Li, Wenjian Shen, Chenquan Yang, Yuxi Dou, Xuehao Zhu, Yao Dong, Juan Zhao, Junyan Xiao, Fuzhi Huang, Yi-Bing Cheng, Jie Zhong. In-situ monitored chemical bath deposition of planar NiOx layer for inverted perovskite solar cell with enhanced efficiency[J]. J. Mater. Sci. Technol., 2023, 133: 145-153.
Fig. 1. Schematic diagram of CBD process for the deposition of NiOx thin film and the assembly of the inverted perovskite solar cells. The inserted is the in-situ absorbance observation for the precursor during CBD of NiOx.
Fig. 2. (a) UV-vis absorption patterns of [Ni(H2O)6]2+ ions with different deposition of NiOx precursor concentrations. (b) Fitted peaks curves of the UV-vis absorption when the reaction reached equilibrium by adding ammonia water at 20 °C and C0.25 concentration. (c) In-situ absorption intensity patterns of CBD precursor at different time during the reaction for the C1 solution deposited at 20 °C. (d) In-situ absorption intensity patterns of CBD precursor at different time during the reaction for the C0.25 solution deposited at 20 °C. (e) P1, P2, and P3 peak position shift patterns at different pH values.
Fig. 3. In-situ UV-vis absorption patterns at 580-590 nm region for [Ni(H2O)6?x(NH3)x]2+ ion in the CBD solution. (a) Samples with different concentrations at 50 °C, (b) different concentrations at room temperature and (c) different temperatures of C0.5 concentration. (d) UV-vis intensity pattern over time of high-rate reaction processes. The SEM images of NiOx films of H20-C1 (e) and H50-C1 (f). (g) UV-vis absorption intensity pattern of low-rate reaction processes. The SEM images of NiOx film under (h) L50-C0.5 and (i) L50-C0.25 condition.
Fig. 4. (a) TG-DSC curves of centrifuged sediments from the CBD solutions. (b) XRD patterns of powders before and after annealing. (c) FTIR spectra of powders before and after annealing. The XPS spectra of NiOx film for (d) Ni 2p3/2 and (e) O 1s. (f) UPS spectra of NiOx samples prepared at different CBD processing.
Fig. 5. Pseudo-color (ΔA) representation of TAS spectra for (a) L50-C0.5 NiOx/PSK and (b) H20-C1 NiOx/PSK. TAS at different pump-probe delay time for (c) L50-C0.5 NiOx/PSK and (d) H20-C1 NiOx/PSK. Decay associate spectra (DAS) obtained from global fit for (e) L50-C0.5 NiOx/PSK and (f) H20-C1 NiOx/PSK. (g) PL spectra of the PSK films deposited on NiOx HTLs. (h) The TRPL spectra of the PSK films deposited on NiOx HTLs. (i) SCLC measurements for the hole-only devices in the dark.
Fig. 6. (a) EIS, (b) champion J-V curves, (c) EQE curves and (d) SPO curves of IPSC devices based on the H20-C1 and L50-C0.5. (e) Long-term SPO test for IPSC device with L50-C0.5 NiOx.
[1] | R. Lin, J. Xu, M. Wei, Y. Wang, Z. Qin, Z. Liu, J. Wu, K. Xiao, B. Chen, S.M. Park, G. Chen, H.R. Atapattu, K.R. Graham, J. Xu, J. Zhu, L. Li, C. Zhang, E.H. Sargent, H. Tan, Nature 603 (2022) 73-78. |
[2] | J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J.Y. Kim, Nature 592 (2021) 381-385. |
[3] | J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.K. Kim, C.S. Moon, N.J. Jeon, J.P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590 (2021) 587-593. |
[4] | H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M. G. Kim, T.J. Shin, S. Il Seok, Nature 598 (2021) 4 4 4-450. |
[5] | H. Kanda, V.Dan Mihailetchi, M.E. Gueunier-Farret, J.P. Kleider, Z. Djebbour, J. Alvarez, B. Philippe, O. Isabella, M.R. Vogt, R. Santbergen, P. Schulz, F. Peter, M.K. Nazeeruddin, J.P. Connolly, Interdiscip. Mater. 1 (2022) 148-156. |
[6] | M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, J. Mater. Chem. A 7 (2019) 26421-26428. |
[7] |
T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Adv. Energy Mater. 6 (2016) 1600457.
DOI URL |
[8] | X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 375 (2022) 434-437. |
[9] | Z.L. Tseng, L.C. Chen, C.H. Chiang, S.H. Chang, C.C. Chen, C.G. Wu, Sol. Energy 139 (2016) 4 84-4 88. |
[10] |
D. Ouyang, J. Xiao, F. Ye, Z. Huang, H. Zhang, L. Zhu, J. Cheng, W.C.H. Choy, Adv. Energy Mater. 8 (2018) 1702722.
DOI URL |
[11] |
L.S. Khanzada, I. Levchuk, Y. Hou, H. Azimi, A. Osvet, R. Ahmad, M. Brandl, P. Herre, M. Distaso, R. Hock, W. Peukert, M. Batentschuk, C.J. Brabec, Adv. Funct. Mater. 26 (2016) 8300-8306.
DOI URL |
[12] |
H. Zhang, H. Wang, H. Zhu, C.C. Chueh, W. Chen, S. Yang, A.K.Y. Jen, Adv. Energy Mater. 8 (2018) 1702762.
DOI URL |
[13] |
J.H. Lee, I.S. Jin, Y.W. Noh, S.H. Park, J.W. Jung, ACS Sustain. Chem. Eng. 7 (2019) 17661-17670.
DOI |
[14] | Y. Chen, Z. Yang, X. Jia, Y. Wu, N. Yuan, J. Ding, W.H. Zhang, S. Liu, Nano Energy 61 (2019) 148-157. |
[15] |
H. Rao, W. Sun, S. Ye, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, C. Huang, ACS Appl. Mater. Interfaces 8 (2016) 7800-7805.
DOI URL |
[16] |
H. Wang, Z. Yu, X. Jiang, J. Li, B. Cai, X. Yang, L. Sun, Energy Technol. 5 (2017) 1836-1843.
DOI URL |
[17] | N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. J.S. Grätzel, Science 358 (2017) 768-771. |
[18] | X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan, Z. Huang, K. Song, J. Liu, J. Troughton, N. Gasparini, C. Zhou, Y. Lin, D.J. Xue, B. Chen, A.K. Johnston, N. Wei, M.N. Hed- hili, M. Wei, A.Y. Alsalloum, P. Maity, B. Turedi, C. Yang, D. Baran, T.D. An- thopoulos, Y. Han, Z.H. Lu, O.F. Mohammed, F. Gao, E.H. Sargent, O.M. Bakr, Nat. Energy 5 (2020) 131-140. |
[19] |
D. Di Girolamo, F. Di Giacomo, F. Matteocci, A.G. Marrani, D. Dini, A. Abate, Chem. Sci. 11 (2020) 7746-7759.
DOI PMID |
[20] |
F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, J. You, J. Energy Chem. 52 (2021) 393-411.
DOI URL |
[21] | Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou, B. Cao, J. Mater. Chem. C 5 (2017) 7084-7094. |
[22] | G. Li, Y. Jiang, S. Deng, A. Tam, P. Xu, M. Wong, H.S. Kwok, Adv. Sci. 4 (2017) 1700463 (Weinh). |
[23] |
B. Zhao, L.C. Lee, L. Yang, A.J. Pearson, H. Lu, X.J. She, L. Cui, K.H.L. Zhang, R. L.Z. Hoye, A. Karani, P. Xu, A. Sadhanala, N.C. Greenham, R.H. Friend, J.L. Mac-Manus-Driscoll, D. Di, ACS Appl. Mater. Interfaces 10 (2018) 41849-41854.
DOI URL |
[24] | S. Pang, C. Zhang, H. Dong, D. Chen, W. Zhu, H. Xi, J. Chang, Z. Lin, J. Zhang, Y. Hao, A.C.S. Appl, Energy Mater. 2 (2019) 4700-4707. |
[25] |
A.T. Gidey, D.W. Kuo, A.D. Fenta, C.T. Chen, C.T. Chen, ACS Appl. Energy Mater. 4 (2021) 6486-6499.
DOI URL |
[26] |
P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong, Y. Sha, W. Tang, P. Zhang, Y. Wu, W. Chen, X. Yang, H. Chen, L. Han, Adv. Energy Mater. 10 (2020) 1903487.
DOI URL |
[27] | S. Xiao, F. Xu, Y. Bai, J. Xiao, T. Zhang, C. Hu, X. Meng, H. Tan, H.P. Ho, S. Yang, Sol. RRL 3 (2018) 1800278. |
[28] | Y. Mo, C. Wang, X. Zheng, P. Zhou, J. Li, X. Yu, K. Yang, X. Deng, H. Park, F. Huang, Y.B. Cheng, Interdiscip. Mater. 1 (2022) 309-315. |
[29] | A. Ashok, G. Regmi, A. Romero-Núñez, M. Solis-López, S. Velumani, H. Cas- taneda, J. Mater. Sci. Mater. Electron. 31 (2020) 7499-7518. |
[30] |
E. Flores-García, P. González-García, J. González-Hernández, R. Ramírez-Bon, Optik 145 (2017) 589-598 (Stuttg).
DOI URL |
[31] | D.D. Hile, H.C. Swart, S.V. Motloung, T.E. Motaung, L.F. Koao, Phys. B 575 (2019) 411706. |
[32] |
S.H. Yi, S.K. Choi, J.M. Jang, J.A. Kim, W.G. Jung, J. Colloid. Interface Sci. 313 (2007) 705-710.
DOI URL |
[33] | J. Zhang, C. Bai, Y. Dong, W. Shen, Q. Zhang, F. Huang, Y.B. Cheng, J. Zhong, Chem. Eng. J. 425 (2021) 1314 4 4. |
[34] | S.Y. Han, D.H. Lee, Y.J. Chang, S.O. Ryu, T.J. Lee, C.H. Chang, J. Electrochem. Soc. 153 (2006) C382-C386. |
[35] | X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Sol. Energy Mater. Sol. Cells 92 (2008) 628-633. |
[36] |
J.H. Yu, S.H. Nam, Y.E. Gil, J.H. Boo, Appl. Surf. Sci. 532 (2020) 147441.
DOI URL |
[37] |
V.T. Chebrolu, B. Balakrishnan, I. Cho, J.S. Bak, H.J. Kim, Dalton Trans. 49 (2020) 14432-14444.
DOI URL |
[38] |
T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Power Sources 359 (2017) 371-378.
DOI URL |
[39] | J. Sun, J. Lu, B. Li, L. Jiang, A.S.R. Chesman, A.D. Scully, T.R. Gengenbach, Y.B. Cheng, J.J. Jasieniak, Nano Energy 49 (2018) 163-171. |
[40] |
M. Park, E. Shin, J. Hong, H. Paik, J. Korean Phys. Soc. 77 (2020) 1248-1252.
DOI URL |
[41] |
P. Oliva, J. Leonardi, J. Laurent, C. Delmas, J. Braconnier, M. Figlarz, F. Fievet, A.J. De Guibert, J. Power Sources 8 (1982) 229-255.
DOI URL |
[42] |
D.P. Dubal, V.J. Fulari, C.D. Lokhande, Microporous Mesoporous Mater. 151 (2012) 511-516.
DOI URL |
[43] |
Q. Fu, S. Xiao, X. Tang, T. Hu, Org. Electron. 69 (2019) 34-41.
DOI URL |
[44] |
U.K. Thakur, P. Kumar, S. Gusarov, A.E. Kobryn, S. Riddell, A. Goswami, K. M. Alam, S. Savela, P. Kar, T. Thundat, A. Meldrum, K. Shankar, ACS Appl. Mater. Interfaces 12 (2020) 11467-11478.
DOI URL |
[45] |
W. Chen, Y. Wu, J. Fan, A.B. Djuriši ´ c, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, Z.B. He, Adv. Energy Mater. 8 (2018) 1703519.
DOI URL |
[46] | Y. Dou, Z. Liu, Z. Wu, Y. Liu, J. Li, C. Leng, D. Fang, G. Liang, J. Xiao, W. Li, X. Wei, F. Huang, Y.B. Cheng, J. Zhong, Nano Energy 71 (2020) 104567. |
[47] | M.T. Trinh, X. Wu, D. Niesner, X.Y. Zhu, J. Mater. Chem. A 3 (2015) 9285-9290. |
[48] |
J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T.W. Kee, F. Huang, Y.B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patter- son, G. Conibeer, Nat. Commun. 8 (2017) 14120.
DOI URL |
[49] |
J.M. Frost, L.D. Whalley, A. Walsh, ACS Energy Lett. 2 (2017) 2647-2652.
DOI URL |
[50] | K. Pydzinska, J. Karolczak, I. Kosta, R. Tena-Zaera, A. Todinova, J. Idigoras, J.A. Anta, M. Ziolek, ChemSusChem 9 (2016) 1647-1659. |
[51] |
C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 10 (2019) 815.
DOI URL |
[1] | In Su Jin, Bhaskar Parida, Jae Woong Jung. Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br [J]. J. Mater. Sci. Technol., 2022, 102(0): 224-231. |
[2] | Huimin Xiang, Pengyun Liu, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells [J]. J. Mater. Sci. Technol., 2022, 113(0): 138-146. |
[3] | Kwonwoo Oh, Kyungeun Jung, Jaehak Shin, Sunglim Ko, Man-Jong Lee. Novel Intense-pulsed-light synthesis of amorphous SnO2 electron-selective layers for efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2021, 92(0): 171-177. |
[4] | Tingting Wu, Guoqiang Deng, Chao Zhen. Metal oxide mesocrystals and mesoporous single crystals: synthesis, properties and applications in solar energy conversion [J]. J. Mater. Sci. Technol., 2021, 73(0): 9-22. |
[5] | Noh Young Wook, Jin In Su, Park Sang Hyun, Jung Jae Woong. Room-temperature synthesis of ZrSnO4 nanoparticles for electron transport layer in efficient planar hetrojunction perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 42(0): 38-45. |
[6] | Kyungeun Jung, Du Hyeon Kim, Jaemin Kim, Sunglim Ko, Jae Won Choi, Ki Chul Kim, Sang-Geul Lee, Man-Jong Lee. Influence of a UV-ozone treatment on amorphous SnO2 electron selective layers for highly efficient planar MAPbI3 perovskite solar cells [J]. J. Mater. Sci. Technol., 2020, 59(0): 195-202. |
[7] | Qian-Qian Chu, Bin Ding, Jun Peng, Heping Shen, Xiaolei Li, Yan Liu, Cheng-Xin Li, Chang-Jiu Li, Guan-Jun Yang, Thomas P. White, Kylie R. Catchpole. Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering [J]. J. Mater. Sci. Technol., 2019, 35(6): 987-993. |
[8] | Yan Li, Bin Ding, Guan-Jun Yang, Chang-Jiu Li, Cheng-Xin LiState. Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering [J]. J. Mater. Sci. Technol., 2018, 34(8): 1405-1411. |
[9] | S. Bassaki, H. Niazi, F. Golestani-Fard, R. Naghizadeh, R. Bayati. Enhanced Photocatalytic Activity in p-NiO Grafted n-TiO2 Porous Coatings [J]. J. Mater. Sci. Technol., 2015, 31(4): 355-360. |
[10] | Liutauras Marcinauskas, Zydrunas Kavaliauskas, Vitas Valincius. Carbon and Nickel Oxide/Carbon Composites as Electrodes for Supercapacitors [J]. J. Mater. Sci. Technol., 2012, 28(10): 931-936. |
[11] | Kui LIANG, Kayhyeok AN, Younghee LEE. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance [J]. J Mater Sci Technol, 2005, 21(03): 292-296. |
[12] | Kui LIANG, Ai CHEN, Li HE, Wei WANG. Nickel Oxide as an Electrode Material for Supercapacitors [J]. J Mater Sci Technol, 2002, 18(04): 383-384. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||