J. Mater. Sci. Technol. ›› 2022, Vol. 99: 184-192.DOI: 10.1016/j.jmst.2021.05.034
• Research article • Previous Articles Next Articles
Huijun Lia, Xiaomin Wanga,b,*(), Zhenxin Zhaoa, Rajesh Pathakc, Siyue Haoa, Xiaoming Qiua, Qiquan Qiaod
Received:
2021-03-31
Revised:
2021-03-31
Accepted:
2021-03-31
Published:
2022-02-10
Online:
2022-02-09
Contact:
Xiaomin Wang
About author:
*College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China. E-mail address: wangxiaomin@tyut.edu.cn (X. Wang).Huijun Li, Xiaomin Wang, Zhenxin Zhao, Rajesh Pathak, Siyue Hao, Xiaoming Qiu, Qiquan Qiao. Microstructure controlled synthesis of Ni, N-codoped CoP/carbon fiber hybrids with improving reaction kinetics for superior sodium storage[J]. J. Mater. Sci. Technol., 2022, 99: 184-192.
Fig. 1. (a) Illustrates the preparation process for Ni-CoP@C-N?CF electrode; (b) The XRD pattern of Ni-CoP@C-N; (c) The SEM images and EDS map of Ni-CoP@C-N; The TEM images: (d) low-resolution of Ni-CoP@C-N, (e) high-resolution of Ni-CoP@C-N; (f) N2 adsorption desorption isotherms and pore size distribution of Ni2P@C-N, Ni-CoP@C-N and CoP@C-N.
Fig. 2. (a) SEM and elemental mapping images; (b) XRD patterns of Ni-CoP@C-N?CF and CF; XPS spectrum: high-resolution XPS spectrum (c) Co 2p, (d) Ni 2p and (e) P 2p.
Fig. 3. (a) Cycling performance of Ni-CoP@C-N?CF, Ni-CoP@C-N, CoP@C-N and Ni2P@C-N; (b) Comparison data of cycle performance in different literatures [[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45]]; (c) Rate capability of Ni-CoP@C-N?CF, Ni-CoP@C-N, CoP@C-N and Ni2P@C-N; (d) Comparison data of rate performance in different literatures [10,35,[42], [43], [44], [45], [46], [47], [48], [49], [50]] and (e) The long cycling performance of Ni-CoP@C-N?CF at current density of 2000 mA g-1.
Fig. 5. (a) SEM images of Ni-CoP@C-N?CF after 300 cycles; (b-c) TEM image of Ni-CoP@C-N?CF after 300 cycles; (d) Schematic illustration of the sodiation-desodiation process of Ni-CoP@C-N?CF.
Fig. 6. (a) CV curves of Ni-CoP@C-N?CF at various scan rates; (b) Relationship between lg (v) and lg (i); (c) The capacitive fraction of Ni-CoP@C-N?CF at 0.6 mV s-1; (d) Fraction of capacitive and diffusion-controlled behavior of Ni-CoP@C-N?CF at various sweep rates.
Fig. 7. (a) Schematic of the full cell assembled with Ni-CoP@C-N?CF and NVP; (b) the charge/discharge curves of Ni-CoP@C-N?CF and NVP in Na+ half-cell; (c) Cycling performance of Ni-CoP@C-N?CF//NVP at current density 200 mA g-1; (d) Ragone plots of the Ni-CoP@C-N?CF//NVP [48,[58], [59], [60], [61], [62]] and a digital image lit by Ni-CoP@C-N?CF//NVP full cell.
[1] |
K. Chen, R. Pathak, A. Gurung, K.M. Reza, N. Ghimire, J. Pokharel, A. Baniya, W. He, J.J. Wu, Q. Qiao, Y. Zhou, J. Mater. Chem. A 8 (2020) 1911-1919.
DOI URL |
[2] |
Z.L. Xu, G. Yoon, K.Y. Park, H. Park, O. Tamwattana, S. Joo Kim, W.M. Seong, K. Kang, Nat. Commun. 10 (2019) 2598.
DOI URL |
[3] |
R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W.H. Zhang, Y. Zhou, Q. Qiao, Adv. Energy Mater. 9 (2019) 1901486.
DOI URL |
[4] | K. Chen, R. Pathak, A. Gurung, E.A. Adhamash, B. Bahrami, Q. He, H. Qiao, A. L.Smirnova, J.J. Wu, Q. Qiao, Y. Zhou, Energy Storage Mater. 18 (2019) 389-396. |
[5] |
J. Deng, W.B. Luo, X. Lu, Q. Yao, Z. Wang, H.K. Liu, H. Zhou, S.X. Dou, Adv. Energy Mater. 8 (2018) 1701610.
DOI URL |
[6] |
X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.E. Wang, J. Sui, G. Cao, Nano Energy 47 (2018) 224-234.
DOI URL |
[7] |
M.Á. Muñoz-Márquezl, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castil-lo-Martínez, T. Rojo, Adv. Energy Mater. 7 (2017) 1700463.
DOI URL |
[8] |
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Energy Environ. Sci. 5 (2012) 5884-5901.
DOI URL |
[9] |
W. Zhang, P. Cao, Z. Zhang, Y. Zhao, Y. Zhang, L. Li, K. Yang, X. Li, L. Gu, Chem. Eng. J. 364 (2019) 123-131.
DOI URL |
[10] |
D. Zhou, L.Z. Fan, J. Mater. Chem. A 6 (2018) 2139-2147.
DOI URL |
[11] |
L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Energy Environ. Sci. 11 (2018) 2310-2340.
DOI URL |
[12] |
Q. Ren, N. Qin, B. Liu, Y. Yao, X. Zhao, Z. Deng, Y. Li, Y. Dong, D. Qian, B.L. Su, W. Zhang, H.E. Wang, J. Mater. Chem. A 8 (2020) 3450-3458.
DOI URL |
[13] | C. Dong, L. Guo, Y. He, C. Chen, Y. Qian, Y. Chen, L. Xu, Energy Storage Mater. 15 (2018) 234-241. |
[14] |
H. Li, X. Wang, Z. Zhao, Z. Tian, D. Zhang, Y. Wu, ChemElectroChem 6 (2019) 404-412.
DOI URL |
[15] |
R.Z. Zhang, K.J. Zhu, J.D. Huang, L.Y. Yang, S.T. Li, Z.Y. Wang, J.R. Xie, H. Wang, J. Liu, J. Alloy. Compd. 775 (2019) 4 90-4 97.
DOI URL |
[16] |
M. Kong, H. Song, J. Zhou, Adv. Energy Mater. 8 (2018) 1801489.
DOI URL |
[17] |
M. Fan, Y. Chen, Y. Xie, T. Yang, X. Shen, N. Xu, H. Yu, C. Yan, Adv. Funct. Mater. 26 (2016) 5019-5027.
DOI URL |
[18] | Q. Li, S. Dong, Y. Zhang, S. Feng, Q. Wang, J. Yuan, Eur. J. Inorg. Chem. 29 (2018) 3433-3438. |
[19] |
K. Zhang, M. Park, J. Zhang, G.H. Lee, J. Shin, Y.M. Kang, Nano Res. 10 (2017) 4337-4350.
DOI URL |
[20] |
Y.M. Xing, X.H. Zhang, D.H. Liu, W.H. Li, L.N. Sun, H.B. Geng, J.P. Zhang, H.Y. Guan, X.L. Wu, Chemelectrochem 4 (2017) 1395-1401.
DOI URL |
[21] |
Y. Xu, B. Peng, F.M. Mulder, Adv. Energy Mater. 8 (2018) 1701847.
DOI URL |
[22] |
R. Mogensen, J. Maibach, A.J. Naylor, R. Younesi, T. Dalton 47 (2018) 10752- 10758.
DOI URL |
[23] |
L. Zheng, R.A. Dunlap, M.N. Obrovac, J. Electrochem. Soc. 163 (2016) A1188-A1191.
DOI URL |
[24] |
X. Wang, K. Chen, G. Wang, X. Liu, H. Wang, ACS Nano 11 (2017) 11602-11616.
DOI URL |
[25] |
W. Zhang, M. Dahbi, S. Amagasa, Y. Yamada, S. Komaba, Electrochem. Commun. 69 (2016) 11-14.
DOI URL |
[26] |
Z. Huang, H. Hou, C. Wang, S. Li, Y. Zhang, X. Ji, Chem. Mater. 29 (2017) 7313-7322.
DOI URL |
[27] |
X. Zhang, J. Li, Y. Sun, Z. Li, P. Liu, Q. Liu, L. Tang, J. Guo, Electrochim. Acta 282 (2018) 626-633.
DOI URL |
[28] | X. Li, H. Wu, A.M. Elshahawy, L. Wang, S.J. Pennycook, C. Guan, J. Wang, Adv. Funct. Mater. 28 (2018) 180 0 036. |
[29] |
Z. Li, L. Zhang, X. Ge, C. Li, S. Dong, C. Wang, L. Yin, Nano Energy 32 (2017) 494-502.
DOI URL |
[30] |
X. Ge, Z. Li, L. Yin, Nano Energy 32 (2017) 117-124.
DOI URL |
[31] | H. Li, S. Hao, Z. Tian, Z. Zhao, X. Wang, Electrochim. Acta 321 (2019) UNSP 134624. |
[32] |
Y.V. Kaneti, J. Zhang, Y.B. He, Z. Wang, S. Tanaka, M.S.A. Hossain, Z.Z. Pan, B. Xi-ang, Q.H. Yang, Y.J. Yamauchi, Mater. Chem. A 5 (2017) 15356-15366.
DOI URL |
[33] | X. Miao, R. Yin, X. Ge, Z. Li, L. Yin, Small13 (2017) UNSP 1702138. |
[34] |
J. Li, Y.Z G.Wei, Y. Xi, X. Pan, Y. Ji, I.V. Zatovsky, W. Han, J. Mater. Chem. A 5 (2017) 14828-14837.
DOI URL |
[35] |
D. Zhou, L.P. Xue, N. Wang, J. Alloy. Compd. 776 (2019) 912-918.
DOI |
[36] |
P. Xu, K. Dai, C. Yang, X. Wang, R. Zou, J. Shao, G. Zeng, M. Zhang, Q. Huang, Z. Su, J. Alloy. Compd. 849 (2020) 156436.
DOI URL |
[37] |
X. Li, X. Zhu, J. Li, P. Liu, M. Huang, B. Xiang, J. Alloy. Compd. 846 (2020) 156256.
DOI URL |
[38] |
C. Fu, H. Yang, G. Feng, L. Wang, T. Liu, Electrochim. Acta 358 (2020) 136921.
DOI URL |
[39] |
Y. Fu, Z. Zhang, C. Zhu, Nanoscale 12 (2020) 16716-16723.
DOI URL |
[40] |
H. Zheng, S. Men, X. Huang, Y. Zhou, H. Gao, J. Huang, X. Kang, J. Mater. Sci. 55 (2020) 9027-9036.
DOI URL |
[41] |
Q. Chang, Y. Jin, M. Jia, C.Z Q, Yuan , M.Jia, J. Colloid Interface Sci. 575 (2020) 61-68.
DOI URL |
[42] |
J. Zheng, X. Huang, X. Pan, C. Teng, N. Wang, Appl. Surf. Sci. 473 (2019) 699-705.
DOI URL |
[43] |
J. Wang, B. Wang, X. Liu, G. Wang, H. Wang, J.J. Bai, Colloid Interface Sci. 538 (2019) 187-198.
DOI URL |
[44] |
Y. Wang, Q. Pan, K. Jia, H. Wang, J. Gao, C. Xu, Y. Zhong, A.A. Alshehri, K.A. Alzahrani, X. Guo, X. Sun, Inorg. Chem. 58 (2019) 6579-6583.
DOI URL |
[45] |
J. Li, X. Li, P. Liu, X. Zhu, R.N. Ali, H. Naz, Y. Yu, B. Xiang, ACS Appl. Mater. Inter. 11 (2019) 11442-11450.
DOI URL |
[46] |
B. Wang, G. Wang, H. Wang, J. Bai, Chemnanomat 4 (2018) 924-935.
DOI URL |
[47] | Y. Jiang, W. Zhang, Y. Yang, Y.S. He, J. Wang, X. Yang, X.Z. Liao, Z.F. Ma, Chem- nanomat 4 (2018) 309-315. |
[48] |
J. Duan, S. Deng, W. Wu, X. Li, H. Fu, Y. Huang, W. Luo, ACS Appl. Mater. Inter. 11 (2019) 12415-12420.
DOI URL |
[49] |
S. Shi, Z. Li, Y. Sun, B. Wang, Q. Liu, Y. Hou, S. Huang, J. Huang, Y. Zhao, Nano Energy 48 (2018) 510-517.
DOI URL |
[50] |
J. Li, L. Shi, J. Gao, G. Zhang, Chem. Eur. J. 24 (2018) 1253-1258.
DOI URL |
[51] |
Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma, C. Wang, X. Ge, S. Dong, L. Yin, Adv. Energy Mater. 6 (2016) 1600376.
DOI URL |
[52] |
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, Adv. Sci. 5 (2018) 1800763.
DOI URL |
[53] |
W. Cai, G. Li, D. Luo, G. Xiao, S. Zhu, Y. Zhao, Z. Chen, Y. Zhu, Y. Qian, Adv. Energy Mater. 8 (2018) 1802561.
DOI URL |
[54] |
P.F. Wang, H.R. Yao, Y. You, Y.G. Sun, Y.X. Yin, Y.G. Guo, Nano Res. 11 (2018) 3258-3271.
DOI URL |
[55] | J. Choi, Y. Myung, S.K. Kim, Appl. Surf. Sci. 467 (2019) 1040-1045. |
[56] |
D. Zhou, J. Ni, L. Li, Nano Energy 57 (2019) 711-717.
DOI |
[57] |
D. Sun, S. Liu, G. Zhang, J. Zhou, Chem. Eng. J. 359 (2019) 1659-1667.
DOI URL |
[58] |
D. Sun, X.B. Zhu, B. Luo, Y. Zhang, Y.G. Tang, H.Y. Wang, L.Z. Wang, Adv. Energy Mater. 8 (2018) 1801197.
DOI URL |
[59] |
L. Wang, X. Zhao, S. Dai, Y. Shen, M. Wang, Electrochim. Acta 314 (2019) 142-150.
DOI URL |
[60] |
C. Chen, Y. Yang, X. Tang, R. Qiu, S. Wang, G. Cao, M. Zhang, Small 15 (2019) 1804740.
DOI URL |
[61] | B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Y. Gu, X. Feng, H. Fan, T. Zhang, C. Lu, X.L. Wu, Adv. Funct. Mater. 28 (2018) 18054 4 4. |
[62] |
M. Huang, B. Xi, Z. Feng, J. Liu, J. Feng, Y. Qian, S. Xiong, J. Mater. Chem. A 6 (2018) 16465-16474.
DOI URL |
[1] | Jiajia Ye, Xuting Li, Guang Xia, Guanghao Gong, Zhiqiang Zheng, Chuanzhong Chen, Cheng Hu. P-doped CoSe2 nanoparticles embedded in 3D honeycomb-like carbon network for long cycle-life Na-ion batteries [J]. J. Mater. Sci. Technol., 2021, 77(0): 100-107. |
[2] | Shi Tao, Wei Zhou, Dajun Wu, Zhicheng Wang, Bin Qian, Wangsheng Chu, Augusto Marcelli, Li Song. Insights into the Ti4+ doping in P2-type Na0.67Ni0.33Mn0.52Ti0.15O2 for enhanced performance of sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 74(0): 230-236. |
[3] | Chuan Wang, Hai Long, Lijiao Zhou, Chao Shen, Wei Tang, Xiaodong Wang, Bingbing Tian, Le Shao, Zhanyuan Tian, Haijun Su, Keyu Xie. A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 66(0): 121-127. |
[4] | Yameng Yin, Cunyuan Pei, Fangyu Xiong, Yi Pan, Xiaoming Xu, Bo Wen, Qinyou An. Porous yolk-shell structured Na3(VO)2(PO4)2F microspheres with enhanced Na-ion storage properties [J]. J. Mater. Sci. Technol., 2021, 83(0): 83-89. |
[5] | Shao-Fang Li, Zhen-Yi Gu, Jin-Zhi Guo, Xian-Kun Hou, Xu Yang, Bo Zhao, Xing-Long Wu. Enhanced electrode kinetics and electrochemical properties of low-cost NaFe2PO4(SO4)2 via Ca2+ doping as cathode material for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2021, 78(0): 176-182. |
[6] | Jin-Sung Park, Gi Dae Park, Yun Chan Kang. Exploration of cobalt selenite-carbon composite porous nanofibers as anode for sodium-ion batteries and unveiling their conversion reaction mechanism [J]. J. Mater. Sci. Technol., 2021, 89(0): 24-35. |
[7] | Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao. Progress in electrolytes for beyond-lithium-ion batteries [J]. J. Mater. Sci. Technol., 2020, 44(0): 237-257. |
[8] | Xiaohui Rong, Fei Gao, Feixiang Ding, Yaxiang Lu, Kai Yang, Hong Li, Xuejie Huang, Liquan Chen, Yong-Sheng Hu. Triple effects of Sn-substitution on Na0.67Ni0.33Mn0.67O2 [J]. J. Mater. Sci. Technol., 2019, 35(7): 1250-1254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||