J. Mater. Sci. Technol. ›› 2022, Vol. 98: 248-257.DOI: 10.1016/j.jmst.2021.05.027
• Research Article • Previous Articles Next Articles
DongHwi Kima, Jee-Hyun Kangb, Hojun Gwona, JooHyun Ryuc, Sung-Joon Kima,*()
Received:
2021-02-03
Revised:
2021-02-03
Accepted:
2021-02-03
Published:
2022-01-30
Online:
2022-01-25
Contact:
Sung-Joon Kim
About author:
*E-mail address: sjkim1@postech.ac.kr (S.-J. Kim).DongHwi Kim, Jee-Hyun Kang, Hojun Gwon, JooHyun Ryu, Sung-Joon Kim. Counter-balancing effects of Si on C partitioning and stacking fault energy of austenite in 10Mn quenching and partitioning steel[J]. J. Mater. Sci. Technol., 2022, 98: 248-257.
Alloy | C | Mn | Al | Si | S | P | Fe |
---|---|---|---|---|---|---|---|
10Mn | 0.21 | 10.20 | 1.94 | - | 0.007 | 0.0001 | Bal. |
10Mn-2Si | 0.20 | 9.88 | 2.06 | 2.01 | 0.006 | 0.0001 | Bal. |
Table 1 Chemical compositions of the steels (wt%).
Alloy | C | Mn | Al | Si | S | P | Fe |
---|---|---|---|---|---|---|---|
10Mn | 0.21 | 10.20 | 1.94 | - | 0.007 | 0.0001 | Bal. |
10Mn-2Si | 0.20 | 9.88 | 2.06 | 2.01 | 0.006 | 0.0001 | Bal. |
Fig. 1. Schematic RT Q&P annealing cycles for 10Mn and 10Mn-2Si alloys. (a) Variation of partitioning temperature, (b) variation of partitioning time.
Fig. 2. Microstructures of 10Mn (a, b, c) and 10Mn-2Si (d, e, f) after partitioning at 300 °C for different periods. (a) 10Mn Q, (b) 10Mn Q&300P 4 h, (c) 10Mn Q&300P 16 h, (d) 10Mn-2Si Q, (e) 10Mn-2Si Q&300P 4 h, (f) 10Mn-2Si Q&300P 16 h (γ: austenite, α´: α´-martensite, α´T: α´-tempered martensite). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
10Mn Q | 10MnQ&300P 16 h | 10Mn-2Si Q | 10Mn-2SiQ&300P 16 h | |
---|---|---|---|---|
Martensite volume fraction | 0.77 | 0.76 | 0.69 | 0.69 |
Austenitevolume fraction | 0.23 | 0.24 | 0.31 | 0.31 |
Table 2 Obtained phase fractions after the heat treatment.
10Mn Q | 10MnQ&300P 16 h | 10Mn-2Si Q | 10Mn-2SiQ&300P 16 h | |
---|---|---|---|---|
Martensite volume fraction | 0.77 | 0.76 | 0.69 | 0.69 |
Austenitevolume fraction | 0.23 | 0.24 | 0.31 | 0.31 |
Fig. 3. Precipitation in (a, b, c) 10Mn Q&300P 16 h and (d, e, f) 10Mn-2Si Q&300P 16 h. (a, d) Bright field images, (b, e) dark field images using (0$\bar{1}$12) epsilon carbide reflection and (c, f) electron diffraction patterns.
Fig. 4. (a, c) Engineering stress-strain curves and (b, d) true stress (solid lines) and strain hardening rate (SHR, dotted lines)-true plastic strain curves after partitioning at different temperatures for 30 min. (a, b) 10Mn, (c,d) 10Mn-2Si. (e) Yield strength (YS), ultimate tensile strength (UTS), and (f) total elongation with respect to partitioning temperature.
Fig. 5. (a, c) Engineering stress-strain curves and (b, d) true stress (solid lines) and strain hardening rate (SHR, dotted lines)-true plastic strain curves after partitioning at different temperatures for 30 min. (a, b) 10Mn, (c, d) 10Mn-2Si. (e) Yield strength (YS), ultimate tensile strength (UTS), and (f) total elongation with respect to partitioning time.
Fig. 10. Austenite in 10Mn Q&300P 16 h after tensile deformation until 0.15 strain. (a) Bright field image of austenite, (b) dark field image of austenite using (200) austenite reflection, (c) dark field image of twin using ($\bar{1}$1$\bar{1}$) twin reflection and (d) electron diffraction pattern.
Fig. 12. (a) Evolution of relative martensite fractions during tensile deformation in 10Mn and 10Mn-2Si, which were fitted with Eq. (4). (b) Acquired k values with respect to stacking fault energy.
[1] | D.K. Matlock, J.G. Speer, in: A. Haldar, S. Suwas, D. Bhattacharjee (eds.), Mi- crostructure and Texture in Steels, Springer, London 2008, pp. 185-205. |
[2] |
D.W. Suh, S.J. Kim, Scr. Mater. 126 (2017) 63-67.
DOI URL |
[3] |
J. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater 51 (2003) 2611-2622.
DOI URL |
[4] | J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, G. Krauss, in: Symposium on the Thermodynamics, Kinetics, Characterization and Modeling of: Austen- ite Formation and Decomposition, Chicago, USA 2003, pp. 505-522. |
[5] |
D.V. Edmonds, K. He, F.C. Rizzo, B.C. DeCooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438-440 (2006) 25-34.
DOI URL |
[6] |
J.G. Speer, F.C. Rizzo, D.K. Matlock, D.V. Edmonds, Mater. Res. 8 (2005) 417-423.
DOI URL |
[7] |
J.G. Speer, E. De Moor, A.J. Clarke, Mater. Sci. Technol. 31 (2015) 3-9.
DOI URL |
[8] |
E.J. Seo, L. Cho, B.C. De Cooman, Metall. Mater. Trans. A 46 (2015) 27-31.
DOI URL |
[9] |
E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater 113 (2016) 124-139.
DOI URL |
[10] |
E.J. Seo, L. Cho, B.C. De Cooman, Acta Mater 107 (2016) 354-365.
DOI URL |
[11] |
L. Cho, E.J. Seo, B.C. DeCooman, Scr. Mater. 123 (2016) 69-72.
DOI URL |
[12] |
D.H. Kim, J.H. Kang, J.H. Ryu, S.J. Kim, Mater. Sci. Technol. 35 (2019) 2115-2119.
DOI URL |
[13] |
B.B. He, L. Liu, M.X. Huang, Metall. Mater. Trans. A 49 (2018) 3167-3172.
DOI URL |
[14] |
I. Vorel, Š. Jeníček, J. Káňa, K. Ibrahim, V. Kot ĕšovec, B. Mašek, IOP Conf. Ser.: Mater. Sci. Eng. 179 (2017) 012068.
DOI URL |
[15] | S. Kaar, D. Krizan, R. Schneider, C. Sommitsch, Steel Res. Int. 91 (2020) 20 0 0181. |
[16] |
Q. Huang, O. Volkova, B.C. DeCooman, H. Biermann, J. Mola, IOP Conf. Ser.: Mater. Sci. Eng. 373 (2018) 012001.
DOI URL |
[17] |
T. Furukawa, Mater. Sci. Technol. 5 (1989) 465-470.
DOI URL |
[18] |
Y. Li, R. Wang, B. Wang, W. Ding. J. Mater. Sci. 56 (2021) 1783-1793.
DOI URL |
[19] | Z. Wang, J. Xu, Y. Yan, J. Li, Materials (Basel) 12 (2019) 4428. |
[20] |
B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, S. Yue, Acta Mater. 148 (2018) 249-262.
DOI URL |
[21] | H.K.D.H Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Mater.Sci. Technol. 7 (1991) 686-698. |
[22] | D.J. Dyson, B. Holmes, J. Iron Steel Inst. 208 (1970) 469-474. |
[23] |
Y.K. Lee, C.S. Choi, Metall. Mater. Trans. A 31 (2000) 355-360.
DOI URL |
[24] |
J. Mahieu, B.C. De Cooman, J. Maki, Metall. Mater. Trans. A 33 (2002) 2573-2580.
DOI URL |
[25] |
B. Kim, C. Celada, D. San Martin, T. Sourmail, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater 61 (2013) 6983-6992.
DOI URL |
[26] |
O. Matsumura, Y. Sakuma, H. Takechi, ISIJ Int 32 (1992) 1014-1020.
DOI URL |
[27] |
M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma, Mater. Sci. Eng. A 527 (2010) 6429-6439.
DOI URL |
[28] | J. Ȧgren, J.Phys.Chem.Solids 43 (1982)385-391. |
[29] | J. Ȧgren, Scr.Mater. 20 (1986)1507-1510. |
[30] | M. Hillert, L. Hoglund, J. Ȧgren, Acta Mater 41 (1993) 1951-1957. |
[31] |
A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40 (2009) 3076-3090.
DOI URL |
[32] |
G.R. Lehnhoff, K.O. Findley, B.C. DeCooman, Scr. Mater. 92 (2014) 19-22.
DOI URL |
[33] |
D.T. Pierce, J.A. Jimenez, J. Bentley, D. Raabe, C. Oskay, J.E. Wittig, Acta Mater 68 (2014) 238-253.
DOI URL |
[34] |
R. Xiong, H. Peng, H. Si, W. Zhang, Y. Wen, Mater. Sci. Eng. A 598 (2014) 376-386.
DOI URL |
[35] |
A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483-484 (2008) 184-187.
DOI URL |
[36] |
K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, Metall. Mater. Trans. A 23 (1992) 3085-3091.
DOI URL |
[37] |
G.B. Olson, M. Cohen, Metall. Trans. A 6 (1975) 791-795.
DOI URL |
[38] |
L. Samek, E. De Moor, J. Penning, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 109-124.
DOI URL |
[39] | D. Fahr, Metall. Trans. 2 (1971) 1883-1892. |
[40] |
E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, J. Van Humbeeck, Scr. Mater. 44 (2001) 885-892.
DOI URL |
[1] | H.F. Li, P. Zhang, B. Wang, Z.F. Zhang. Predictive fatigue crack growth law of high-strength steels [J]. J. Mater. Sci. Technol., 2022, 100(0): 46-50. |
[2] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
[3] | Yanyu Song, Duo Liu, Guobiao Jin, Haitao Zhu, Naibin Chen, Shengpeng Hu, Xiaoguo Song, Jian Cao. Fabrication of Si3N4/Cu direct-bonded heterogeneous interface assisted by laser irradiation [J]. J. Mater. Sci. Technol., 2022, 99(0): 169-177. |
[4] | Pengyu Wen, Bin Hu, Jiansheng Han, Haiwen Luo. A strong and ductile medium Mn steel manufactured via ultrafast heating process [J]. J. Mater. Sci. Technol., 2022, 97(0): 54-68. |
[5] | Jiang Yang, Honggang Dong, Yueqing Xia, Peng Li, Xiaohu Hao, Yaqiang Wang, Wei Wu, Baosen Wang. Carbide precipitates and mechanical properties of medium Mn steel joint with metal inert gas welding [J]. J. Mater. Sci. Technol., 2021, 75(0): 48-58. |
[6] | Jinliang Wang, Minghao Huang, Jun Hu, Chenchong Wang, Wei Xu. EBSD investigation of the crystallographic features of deformation-induced martensite in stainless steel [J]. J. Mater. Sci. Technol., 2021, 69(0): 148-155. |
[7] | Ruobin Chang, Wei Fang, Jiaohui Yan, Haoyang Yu, Xi Bai, Jia Li, Shiying Wang, Shijian Zheng, Fuxing Yin. Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations [J]. J. Mater. Sci. Technol., 2021, 62(0): 25-33. |
[8] | Kui Chen, Huabing Li, Zhouhua Jiang, Fubin Liu, Congpeng Kang, Xiaodong Ma, Baojun Zhao. Multiphase miacrostructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel [J]. J. Mater. Sci. Technol., 2021, 72(0): 81-92. |
[9] | Xi Li, Zhongtao Li, Zhenggang Wu, Shijun Zhao, Weidong Zhang, Hongbin Bei, Yanfei Gao. Strengthening in Al-, Mo-or Ti-doped CoCrFeNi high entropy alloys: A parallel comparison [J]. J. Mater. Sci. Technol., 2021, 94(0): 264-274. |
[10] | Pan Xie, Shucheng Shen, Cuilan Wu, Jianghua Chen. Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel [J]. J. Mater. Sci. Technol., 2021, 60(0): 156-161. |
[11] | C.J. Barr, K. Xia. Grain refinement in low SFE and particle-containing nickel aluminium bronze during severe plastic deformation at elevated temperatures [J]. J. Mater. Sci. Technol., 2021, 82(0): 57-68. |
[12] | Dae Cheol Yang, Yong Hee Jo, Yuji Ikeda, Fritz Körmann, Seok Su Sohn. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90(0): 159-167. |
[13] | Lei He, ZhiLei Wang, Hiroyuki Akebono, Atsushi Sugeta. Machine learning-based predictions of fatigue life and fatigue limit for steels [J]. J. Mater. Sci. Technol., 2021, 90(0): 9-19. |
[14] | Yifan Wang, Yanli Lu, Jing Zhang, Wenchao Yang, Changlin Yang, Pan Wang, Xiaoqing Song, Zheng Chen. Investigation of the 12 orientations variants of nanoscale Al precipitates in eutectic Si of Al-7Si-0.6Mg alloy [J]. J. Mater. Sci. Technol., 2021, 67(0): 186-196. |
[15] | B. Munirathinam, J.P.B. van Dam, A. Herrmann, W.D. van Driel, F. De Buyl, S.J.F. Erich, L.G.J. van der Ven, O.C.G. Adan, J.M.C. Mol. Exploring water and ion transport process at silicone/copper interfaces using in-situ electrochemical and Kelvin probe approaches [J]. J. Mater. Sci. Technol., 2021, 64(0): 203-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||