J. Mater. Sci. Technol. ›› 2022, Vol. 98: 169-176.DOI: 10.1016/j.jmst.2021.05.020
• Research Article • Previous Articles Next Articles
Huihui Baia, Zhixing Zhanga, Yajie Huoa, Yongtao Shena, Mengmeng Qina,*(), Wei Fenga,b,c,*(
)
Received:
2021-04-02
Revised:
2021-05-04
Accepted:
2021-05-07
Published:
2022-01-30
Online:
2022-01-25
Contact:
Mengmeng Qin,Wei Feng
About author:
weifeng@tju.edu.cn (W. Feng).Huihui Bai, Zhixing Zhang, Yajie Huo, Yongtao Shen, Mengmeng Qin, Wei Feng. Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties[J]. J. Mater. Sci. Technol., 2022, 98: 169-176.
Fig. 2. Mechanical properties of GATA hydrogels. (a) Tensile stress-strain curves. (b) Compressive stress-strain curves of GATA hydrogels with varying Gel concentrations. (c) Tensile stress-strain curves. (d) Compressive stress-strain curves of GATA hydrogels with varying TA concentrations.
Fig. 3. Adhesive properties of GATA hydrogels. (a) GATA hydrogel adhered to various substrates, including glass, plastic, rubber metal, PTFE, and wood. (b) Schematic illustration of the tensile adhesion test. (c) The adhesive strength of GATA hydrogels for different materials measured by tensile adhesion tests. (d) The adhesive strength of different materials for GATA hydrogels with diverse TA concentrations.
Fig. 4. Self-healing properties of GATA hydrogels. (a) GATA hydrogel is cut into two parts, recombined, and stretched. (b) Stress-strain curves of GATA hydrogels which were cut and self-healed for 3 h under different temperatures. (c) Typical stress-strain curves of the original and self-healed GATA hydrogels with different healing times at 60 °C. (d) The self-healing efficiency of GATA hydrogels as a function of healing time at 60 °C. (e) G′ and G″ of the GATA hydrogel in alternate step strain test with a strain of 1 and 300% at a time interval of 100 s.
Fig. 6. Electrical performance of GATA hydrogel. (a) The relationship between the electrical resistance and the tensile deformation of GATA hydrogel. (b) Resistance changes of the hydrogel sensor in the process of step strain from 100% to 600%. (c) Stability of the sensors when stretching 10 turns at 600% strain. (d) Stability of the sensors when stretching 170 cycles at 100% strain.
Fig. 7. Demonstration of the GATA hydrogel as sensors to monitor different human motions. Relative resistance changes when bending (a) finger, (b) wrist, (c) elbow, (d) knee.
[1] |
Y.P. Singh, N. Bhardwaj, B.B. Mandal, ACS Appl. Mater. Interfaces 8 (2016) 21236-21249.
DOI URL |
[2] | M. Liu, X. Zeng, C. Ma, H. Yi, Z. Ali, X.B. Mou, S. Li, Y. Deng, N.Y. He, Bone Res. 5 (2017) 75-94. |
[3] |
K.X. Ren, C.L. He, C.S. Xiao, G. Li, X.S. Chen, Biomaterials 51 (2015) 238-249.
DOI URL |
[4] |
Y. Peng, L.J. Zhao, C.Y. Yang, Y. Yang, C. Song, Q. Wu, G.S. Huang, J.R. Wu, J. Mater. Chem. A 6 (2018) 19066-19074.
DOI URL |
[5] |
J.H. Kang, D. Son, G.J.N. Wang, Y.X. Liu, J. Lopez, Y. Kim, J.Y. Oh, T. Katsumata, J.W. Mun, Y. Lee, L.H. Jin, J.B.H. Tok, Z.N. Bao, Adv. Mater. 30 (2018) 1706846.
DOI URL |
[6] | Z.X. Zhang, L. Tang, C. Chen, H.T. Yu, H.H. Bai, L. Wang, M.M. Qin, Y.Y. Feng, W. Feng, J. Mater. Chem. A 9(2021), doi: 10.1039/d0ta09730f. |
[7] |
W.J. Zheng, N. An, J.H. Yang, J.X. Zhou, Y.M. Chen, ACS Appl. Mater. Interfaces 7 (2015) 1758-1764.
DOI URL |
[8] |
H. Yuk, S.T. Lin, C. Ma, M. Takaffoli, N.X. Fang, X.H. Zhao, Nat. Commun. 8 (2017) 14230.
DOI URL |
[9] |
S.W. Xiao, M.Z. Zhang, X.M. He, L. Huang, Y.X. Zhang, B.P. Ren, M.Q. Zhong, Y. Chang, J.T. Yang, J. Zheng, ACS Appl. Mater. Interfaces 10 (2018) 21642-21653.
DOI URL |
[10] |
T.T. Yang, W. Wang, H.Z. Zhang, X.M. Li, J.D. Shi, Y.J. He, Q.S. Zheng, Z.H. Li, H.W. Zhu, ACS Nano 9 (2015) 10867-10875.
DOI URL |
[11] | Z.X. Zhang, L. Wang, H.T. Yu, F. Zhang, L. Tang, Y.Y. Feng, W. Feng, ACS Appl. Mater. Interfeces 12 (2020) 15657-15666. |
[12] |
J. Lee, S. Kim, J. Lee, D. Yang, B.C. Park, S. Ryu, I. Park, Nanoscale 6 (2014) 11932-11939.
DOI URL |
[13] |
C.Y. Shao, M. Wang, L. Meng, H.L. Chang, B. Wang, F. Xu, J. Yang, P.B. Wan, Chem. Mater. 30 (2018) 3110-3121.
DOI URL |
[14] |
Q. Chen, L. Zhu, C. Zhao, Q.M. Wang, J. Zheng, Adv. Mater. 25 (2013) 4171-4176.
DOI URL |
[15] |
J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater 15 (2003) 1155-1158.
DOI URL |
[16] |
C.G. Pan, L.B. Liu, Q. Chen, Q. Zhang, G.L. Guo, ACS Appl. Mater. Interfaces 9 (2017) 38052-38061.
DOI URL |
[17] |
M.K. Shin, G.M. Spinks, S.R. Shin, S.I. Kim, S.J. Kim, Adv. Mater. 21 (2009) 1712-1715.
DOI URL |
[18] |
J.Y. Li, W.B.K. Illeperuma, Z.G. Suo, J.J. Vlassak, ACS Macro Lett. 3 (2014) 520-523.
DOI URL |
[19] |
X.Y. He, C.Y. Zhang, M. Wang, Y.L. Zhang, L.Q. Liu, W. Yang, ACS Appl. Mater. Interfaces 9 (2017) 11134-11143.
DOI URL |
[20] |
L. Tang, D. Zhang, L. Gong, Y.X. Zhang, S.W. Xie, B.P. Ren, Y.L. Liu, F.Y. Yang, G.Y. Zhou, Y. Chang, J.X. Tang, J. Zheng, Macromolecules 52 (2019) 9512-9525.
DOI |
[21] |
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang, W. Feng, Macromolecules 53 (2020) 7161-7170.
DOI URL |
[22] |
Z. Deng, T. Hu, Q. Lei, J. He, P.X. Ma, B. Guo, ACS Appl. Mater. Interfaces 11 (2019) 6796-6808.
DOI URL |
[23] |
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang, W. Feng, Macromolecules 53 (2020) 7161-7170.
DOI URL |
[24] |
D.C. Tuncaboylu, M. Sari, W. Oppermann, O. Okay, Macromolecules 44 (2011) 4997-5005.
DOI URL |
[25] |
Z.J. Wei, J. He, T. Liang, H. Oh, J. Athas, Z. Tong, C.Y. Wang, Z.H. Nie, Polym. Chem. 4 (2013) 4601-4605.
DOI URL |
[26] | Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Chem.Mater. 30 (2018) 1729-1742. |
[27] |
J. Yu, W. Ha, J.N. Sun, Y.P. Shi, ACS Appl. Mater. Interfaces 6 (2014) 19544-19551.
DOI URL |
[28] |
B.H. You, Q.T. Li, H. Dong, T. Huang, X.D. Cao, H. Liao. J. Mater. Sci. Technol. 34 (2018) 1016-1025.
DOI URL |
[29] |
B.W. Yang, W. Yuan, Acs Appl. Mater. Interfaces 11 (2019) 16765-16775.
DOI URL |
[30] |
S.W. Zhao, P. Tseng, J. Grasman, Y. Wang, W.Y. Li, B. Napier, B. Yavuz, Y. Chen, L. Howell, J. Rincon, F.G. Omenetto, D.L. Kaplan, Adv. Mater. 30 (2018) 1800598.
DOI URL |
[31] |
C.B. Liang, P. Song, A.J. Ma, X.T. Shi, H.B. Gu, L. Wang, H. Qiu, J. Kong, J.W. Gu, Compos. Sci. Technol. 181 (2019) 107683.
DOI URL |
[32] | L. Wang, H. Qiu, P. Song, Y.L. Zhang, Y.J. Lu, C.B. Liang, J. Kong, L.X. Chen, J.W. Gu, Compos. Pt. A Appl.Sci. Manuf. 123 (2019) 293-300. |
[33] |
Y.F. Zhang, M.M. Guo, Y. Zhang, C.Y. Tang, C. Jiang, Y.Q. Dong, W.C. Law, F.P. Du, Polym. Test 81 (2020) 106213.
DOI URL |
[34] |
Y.L. Zhang, L. Wang, J.L. Zhang, P. Song, Z.R. Xiao, C.B. Liang, H. Qiu, J. Kong, J.W. Gu, Compos. Sci. Technol. 183 (2019) 107833.
DOI URL |
[35] |
H.L. Fan, L. Wang, X.D. Feng, Y.Z. Bu, D.C. Wu, Z.X. Jin, Macromolecules 50 (2017) 666-676.
DOI URL |
[36] |
B.J. Kim, D.X. Oh, S. Kim, J.H. Seo, D.S. Hwang, A. Masic, D.K. Han, H.J. Cha, Biomacromolecules 15 (2014) 1579-1585.
DOI URL |
[37] |
Z.R. Jia, Y. Zeng, P.F. Tang, D.L. Gan, W.S. Xing, Y. Hou, K.F. Wang, C.M. Xie, X. Lu, Chem. Mat. 31 (2019) 5625-5632.
DOI URL |
[38] |
C.Y. Shao, L. Meng, M. Wang, C. Cui, B. Wang, C.R. Han, F. Xu, J. Yang, ACS Appl. Mater. Interfaces 11 (2019) 5885-5895.
DOI URL |
[39] |
F.C. Lin, Z. Wang, Y.P. Shen, L.R. Tang, P.L. Zhang, Y.F. Wang, Y.D. Chen, B. Huang, B.L. Lu, J. Mater. Chem. A 7 (2019) 26442-26455.
DOI URL |
[40] | L. Han, L.W. Yan, K.F. Wang, L.M. Fang, H.P. Zhang, Y.H. Tang, Y.H. Ding, L.T. Weng, J.L. Xu, J. Weng, Y.J. Liu, F.Z. Ren, X. Lu, Npg Asia Mater 9 (2017) e372. |
[41] |
X. Liu, Q. Zhang, Z. Gao, R. Hou, G. Gao, ACS Appl. Mater. Interfaces 9 (2017) 17645-17652.
DOI URL |
[1] | Yuzhang Du, Xudong Wang, Xingyi Dai, Wenxuan Lu, Yusheng Tang, Jie Kong. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics [J]. J. Mater. Sci. Technol., 2022, 100(0): 1-11. |
[2] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
[3] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[4] | Yanqi Ma, Haowei Huang, Hongda Zhou, Michael Graham, James Smith, Xinxin Sheng, Ying Chen, Li Zhang, Xinya Zhang, Elena Shchukina, Dmitry Shchukin. Superior anti-corrosion and self-healing bi-functional polymer composite coatings with polydopamine modified mesoporous silica/graphene oxide [J]. J. Mater. Sci. Technol., 2021, 95(0): 95-104. |
[5] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[6] | Xutong Yang, Xiao Zhong, Junliang Zhang, Junwei Gu. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. J. Mater. Sci. Technol., 2021, 68(0): 209-215. |
[7] | Jiayun Feng, Yanhong Tian, Sumei Wang, Ming Xiao, Zhuang Hui, Chunjin Hang, Walter W. Duley, Y. Norman Zhou. Femtosecond laser irradiation induced heterojunctions between carbon nanofibers and silver nanowires for a flexible strain sensor [J]. J. Mater. Sci. Technol., 2021, 84(0): 139-146. |
[8] | Li Cheng, Chengbao Liu, Hao Wu, Haichao Zhao, Feixiong Mao, Liping Wang. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings [J]. J. Mater. Sci. Technol., 2021, 80(0): 36-49. |
[9] | Yuxuan Mao, Peng Li, Jiewei Yin, Yanjie Bai, Huan Zhou, Xiao Lin, Huilin Yang, Lei Yang. Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis [J]. J. Mater. Sci. Technol., 2021, 63(0): 228-235. |
[10] | Yuwei Ye, Hao Chen, Yangjun Zou, Haichao Zhao. Study on self-healing and corrosion resistance behaviors of functionalized carbon dot-intercalated graphene-based waterborne epoxy coating [J]. J. Mater. Sci. Technol., 2021, 67(0): 226-236. |
[11] | Adnan Tahir, Guang-Rong Li, Mei-Jun Liu, Guan-Jun Yang, Cheng-Xin Li, Yu-Yue Wang, Chang-Jiu Li. Improving WC-Co coating adhesive strength on rough substrate: Finite element modeling and experiment [J]. J. Mater. Sci. Technol., 2020, 37(0): 1-8. |
[12] | Aeree Kim, Seonghyeon Kim, Myoung Huh, Hyungmo Kim, Chan Lee. Superior anti-icing strategy by combined sustainable liquid repellence and electro/photo-responsive thermogenesis of oil/MWNT composite [J]. J. Mater. Sci. Technol., 2020, 49(0): 106-116. |
[13] | Xiao Lin, Yanjie Bai, Huan Zhou, Lei Yang. Mechano-active biomaterials for tissue repair and regeneration [J]. J. Mater. Sci. Technol., 2020, 59(0): 227-233. |
[14] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
[15] | Lian Guo, Wei Wu, Yongfeng Zhou, Fen Zhang, Rongchang Zeng, Jianmin Zeng. Layered double hydroxide coatings on magnesium alloys: A review [J]. J. Mater. Sci. Technol., 2018, 34(9): 1455-1466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||