J. Mater. Sci. Technol. ›› 2022, Vol. 131: 195-203.DOI: 10.1016/j.jmst.2022.05.037
• Research Article • Previous Articles Next Articles
Received:2022-01-11
Revised:2022-04-26
Accepted:2022-05-08
Published:2022-06-18
Online:2022-06-18
Contact:
Il Sohn
About author:*E-mail address: ilsohn@yonsei.ac.kr (I. Sohn)Jian Yang, Il Sohn. Compositional dependence of thermophysical properties in binary alkaline earth borate melts: Insights from structure in short-range and intermediate-range order[J]. J. Mater. Sci. Technol., 2022, 131: 195-203.
| Designed compositions (mol.%) | Measured compositions (mol.%) | |||||
|---|---|---|---|---|---|---|
| BO1.5/MO | MO | B2O3 | MO | B2O3 | ||
| MO = CaO | CB1 | 4.5 | 30.8 | 69.2 | 31.7 | 68.3 |
| CB2 | 3.5 | 36.4 | 63.6 | 36.9 | 63.1 | |
| CB3 | 2.5 | 44.5 | 55.5 | 44.5 | 55.5 | |
| MO = SrO | SB1 | 4.5 | 30.8 | 69.2 | 31.6 | 68.4 |
| SB2 | 3.5 | 36.4 | 63.6 | 37.1 | 62.9 | |
| SB3 | 2.5 | 44.5 | 55.5 | 44.6 | 55.4 | |
| MO=BaO | BB1 | 4.5 | 30.8 | 69.2 | 31.7 | 68.3 |
| BB2 | 3.5 | 36.4 | 63.6 | 36.8 | 63.2 | |
| BB3 | 2.5 | 44.5 | 55.5 | 44.8 | 55.2 | |
Table 1. Chemical composition of alkaline earth borate systems in the present study.
| Designed compositions (mol.%) | Measured compositions (mol.%) | |||||
|---|---|---|---|---|---|---|
| BO1.5/MO | MO | B2O3 | MO | B2O3 | ||
| MO = CaO | CB1 | 4.5 | 30.8 | 69.2 | 31.7 | 68.3 |
| CB2 | 3.5 | 36.4 | 63.6 | 36.9 | 63.1 | |
| CB3 | 2.5 | 44.5 | 55.5 | 44.5 | 55.5 | |
| MO = SrO | SB1 | 4.5 | 30.8 | 69.2 | 31.6 | 68.4 |
| SB2 | 3.5 | 36.4 | 63.6 | 37.1 | 62.9 | |
| SB3 | 2.5 | 44.5 | 55.5 | 44.6 | 55.4 | |
| MO=BaO | BB1 | 4.5 | 30.8 | 69.2 | 31.7 | 68.3 |
| BB2 | 3.5 | 36.4 | 63.6 | 36.8 | 63.2 | |
| BB3 | 2.5 | 44.5 | 55.5 | 44.8 | 55.2 | |
Fig. 1. Thermal conductivity of alkaline earth borate melts at different temperatures. (Error bars of thermal conductivity are represented by the height of shadow at each point.)
| Tg (K) | Cpliq (J g-1 K-1)* | Density (106 g m-3) at different temperatures (K) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 1323 | 1373 | 1423 | 1473 | 1523 | 1573 | 1623 | |||
| CB1 | 915 | 2.48 | 2.26 | 2.23 | 2.20 | 2.18 | 2.15 | 2.12 | 2.09 |
| CB2 | 915 | 2.47 | 2.32 | 2.30 | 2.27 | 2.25 | 2.22 | 2.19 | 2.17 |
| CB3 | 908 | 2.33 | 2.41 | 2.39 | 2.37 | 2.35 | 2.33 | 2.30 | 2.28 |
| SB1 | 900 | 2.06 | 2.68 | 2.65 | 2.62 | 2.59 | 2.55 | 2.52 | 2.49 |
| SB2 | 901 | 1.91 | 2.82 | 2.79 | 2.76 | 2.73 | 2.70 | 2.67 | 2.64 |
| SB3 | 890 | 1.85 | 3.01 | 2.99 | 2.96 | 2.93 | 2.91 | 2.88 | 2.86 |
| BB1 | 865 | 1.56 | 3.00 | 2.96 | 2.93 | 2.90 | 2.87 | 2.83 | 2.80 |
| BB2 | 858 | 1.50 | 3.18 | 3.15 | 3.11 | 3.08 | 3.05 | 3.01 | 2.98 |
| BB3 | 835 | 1.26 | 3.45 | 3.42 | 3.38 | 3.35 | 3.31 | 3.28 | 3.24 |
Table 2. Specific heat capacity of liquid phase (Cpliq), glass transition temperature (Tg), and estimated density of borate melts at different temperatures (106 g m-3).
| Tg (K) | Cpliq (J g-1 K-1)* | Density (106 g m-3) at different temperatures (K) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| 1323 | 1373 | 1423 | 1473 | 1523 | 1573 | 1623 | |||
| CB1 | 915 | 2.48 | 2.26 | 2.23 | 2.20 | 2.18 | 2.15 | 2.12 | 2.09 |
| CB2 | 915 | 2.47 | 2.32 | 2.30 | 2.27 | 2.25 | 2.22 | 2.19 | 2.17 |
| CB3 | 908 | 2.33 | 2.41 | 2.39 | 2.37 | 2.35 | 2.33 | 2.30 | 2.28 |
| SB1 | 900 | 2.06 | 2.68 | 2.65 | 2.62 | 2.59 | 2.55 | 2.52 | 2.49 |
| SB2 | 901 | 1.91 | 2.82 | 2.79 | 2.76 | 2.73 | 2.70 | 2.67 | 2.64 |
| SB3 | 890 | 1.85 | 3.01 | 2.99 | 2.96 | 2.93 | 2.91 | 2.88 | 2.86 |
| BB1 | 865 | 1.56 | 3.00 | 2.96 | 2.93 | 2.90 | 2.87 | 2.83 | 2.80 |
| BB2 | 858 | 1.50 | 3.18 | 3.15 | 3.11 | 3.08 | 3.05 | 3.01 | 2.98 |
| BB3 | 835 | 1.26 | 3.45 | 3.42 | 3.38 | 3.35 | 3.31 | 3.28 | 3.24 |
Fig. 4. Integrated peak intensity of metaborate chains, SMR with 1 and 2 B?4ˉ units, and the ratio of the integrated peak intensity of SMR with 1 B?4ˉ unit (S1BO4ˉ) to those with 2 B?4ˉ units (S2BO4ˉ) as a function of BO1.5/MO ratios (M = (a) Ca, (b) Sr, and (c) Ba).
Fig. 6. O1s photoelectron spectra and intensity contour of alkaline earth borates: (a) BO1.5/MO = 2.5; (b) BO1.5/MO = 3.5; and (c) BO1.5/MO = 4.5 (M = Ca, Sr, and Ba).
| B[3]-NBO | B[4]-O-B[4] | B[3]-O-B[4] | B[3]-O-B[3] | |||||
|---|---|---|---|---|---|---|---|---|
| BE (eV) | AF | BE (eV) | AF | BE (eV) | AF | BE (eV) | AF | |
| CB1 | 530.3 | 0.031 | 531.1 | 0.078 | 532.1 | 0.644 | 532.9 | 0.247 |
| CB2 | 530.3 | 0.049 | 531.2 | 0.115 | 532.1 | 0.632 | 533.0 | 0.204 |
| CB3 | 530.3 | 0.080 | 531.2 | 0.201 | 532.1 | 0.578 | 533.3 | 0.141 |
| SB1 | 530.2 | 0.028 | 531.1 | 0.157 | 532.0 | 0.607 | 532.9 | 0.208 |
| SB2 | 530.2 | 0.040 | 531.2 | 0.170 | 532.0 | 0.600 | 533.0 | 0.190 |
| SB3 | 530.1 | 0.062 | 531.3 | 0.249 | 532.1 | 0.564 | 533.4 | 0.125 |
| BB1 | 529.7 | 0.017 | 531.2 | 0.222 | 532.1 | 0.581 | 533.2 | 0.180 |
| BB2 | 529.7 | 0.029 | 531.1 | 0.277 | 532.1 | 0.549 | 533.3 | 0.145 |
| BB3 | 530.3 | 0.099 | 531.3 | 0.301 | 532.1 | 0.516 | 533.4 | 0.084 |
Table 3. O1s binding energy (BE) and area fraction (AF) of each oxygen species in the deconvolution of XPS spectra.
| B[3]-NBO | B[4]-O-B[4] | B[3]-O-B[4] | B[3]-O-B[3] | |||||
|---|---|---|---|---|---|---|---|---|
| BE (eV) | AF | BE (eV) | AF | BE (eV) | AF | BE (eV) | AF | |
| CB1 | 530.3 | 0.031 | 531.1 | 0.078 | 532.1 | 0.644 | 532.9 | 0.247 |
| CB2 | 530.3 | 0.049 | 531.2 | 0.115 | 532.1 | 0.632 | 533.0 | 0.204 |
| CB3 | 530.3 | 0.080 | 531.2 | 0.201 | 532.1 | 0.578 | 533.3 | 0.141 |
| SB1 | 530.2 | 0.028 | 531.1 | 0.157 | 532.0 | 0.607 | 532.9 | 0.208 |
| SB2 | 530.2 | 0.040 | 531.2 | 0.170 | 532.0 | 0.600 | 533.0 | 0.190 |
| SB3 | 530.1 | 0.062 | 531.3 | 0.249 | 532.1 | 0.564 | 533.4 | 0.125 |
| BB1 | 529.7 | 0.017 | 531.2 | 0.222 | 532.1 | 0.581 | 533.2 | 0.180 |
| BB2 | 529.7 | 0.029 | 531.1 | 0.277 | 532.1 | 0.549 | 533.3 | 0.145 |
| BB3 | 530.3 | 0.099 | 531.3 | 0.301 | 532.1 | 0.516 | 533.4 | 0.084 |
Fig. 7. 11B MAS-NMR spectra of alkaline earth borates at BO1.5/MO = (a) 2.5; (b) 3.5; and (c) 4.5 (M = Ca, Sr, and Ba); and (d) B[4] proportion (N4) in comparison with references and “Dell and Bray model” (solid line).
| Sample | B[3] δiso (ppm) | B[4] δiso (ppm) | N4 | nNBO* | N2* |
|---|---|---|---|---|---|
| CB1 | 18.40 | 0.39 | 0.448 | 0.009 | 0.016 |
| CB2 | 18.58 | 0.43 | 0.468 | 0.065 | 0.117 |
| CB3 | 18.88 | 0.52 | 0.485 | 0.168 | 0.317 |
| SB1 | 18.64 | 0.44 | 0.455 | 0.004 | 0.007 |
| SB2 | 19.01 | 0.56 | 0.481 | 0.061 | 0.109 |
| SB3 | 19.18 | 0.71 | 0.492 | 0.164 | 0.313† |
| BB1 | 18.84 | 0.60 | 0.467 | <0.001 | <0.001 |
| BB2 | 19.25 | 0.75 | 0.489 | 0.052 | 0.093 |
| BB3 | 19.46 | 0.99 | 0.457 | 0.186 | 0.354† |
Table 4. Deconvoluted fractions of boron species from 11B MAS-NMR spectra.
| Sample | B[3] δiso (ppm) | B[4] δiso (ppm) | N4 | nNBO* | N2* |
|---|---|---|---|---|---|
| CB1 | 18.40 | 0.39 | 0.448 | 0.009 | 0.016 |
| CB2 | 18.58 | 0.43 | 0.468 | 0.065 | 0.117 |
| CB3 | 18.88 | 0.52 | 0.485 | 0.168 | 0.317 |
| SB1 | 18.64 | 0.44 | 0.455 | 0.004 | 0.007 |
| SB2 | 19.01 | 0.56 | 0.481 | 0.061 | 0.109 |
| SB3 | 19.18 | 0.71 | 0.492 | 0.164 | 0.313† |
| BB1 | 18.84 | 0.60 | 0.467 | <0.001 | <0.001 |
| BB2 | 19.25 | 0.75 | 0.489 | 0.052 | 0.093 |
| BB3 | 19.46 | 0.99 | 0.457 | 0.186 | 0.354† |
| [1] |
Y. Kim, Y. Yanaba, K. Morita, J. Am. Ceram. Soc. 100 (2017) 5746-5754.
DOI URL |
| [2] |
M. Bengisu, J. Mater. Sci. 51 (2016) 2199-2242.
DOI URL |
| [3] |
A.A. Osipov, L.M. Osipova, J. Phys. Chem. Solids 74 (2013) 971-978.
DOI URL |
| [4] |
J.S. Wu, J.F. Stebbins, T. Rouxelc, J. Am. Ceram. Soc. 97 (2014) 2794-2801.
DOI URL |
| [5] |
L. Shartsis, H.F. Shermer, J. Am. Ceram. Soc. 37 (1954) 544-551.
DOI URL |
| [6] | D. Ehrt, Glass Technol. 41 (2000) 182-185. |
| [7] | S. Feller, T. Mullenbach, M. Franke, S. Bista, A. O’Donovan-Zavada, K. Hopkins, D. Starkenberg, J. McCoy, D. Leipply, J. Stansberry, E. Troendle, M. Affatigato, D. Holland, M.E. Smith, S. Kroeker, V.K. Michaelis, J.E.C. Wren, Phys. Chem. Glasses 53 (2012) 210-218. |
| [8] |
Q. Zheng, J.C. Mauro, M.M. Smedskjaer, R.E. Youngman, M. Potuzak, Y. Yue, J. Non-Cryst. Solids 358 (2012) 658-665.
DOI URL |
| [9] |
Y. Kang, J. Lee, K. Morita, ISIJ Int. 54 (2014) 2008-2016.
DOI URL |
| [10] |
K.C. Mills, ISIJ Int. 33 (1993) 148-155.
DOI URL |
| [11] | Q. Wang, J.S. Zhang, J.Z. Liu, W.X. Wu, X. Qi, H. Deng, Int. J. Heat Mass. Tran. 160 (2020) 120167. |
| [12] |
J. Menashe, W.A. Wakeham, Int. J. Heat Mass. Tran. 25 (1982) 661-673.
DOI URL |
| [13] | M. Hayashi, H. Ishii, M. Susa, H. Fukuyama, K. Nagata, Phys. Chem. Glasses 42 (2001) 6-11. |
| [14] |
Y. Kim, K. Morita, J. Am. Ceram. Soc. 98 (2015) 1588-1595.
DOI URL |
| [15] |
Y. Kim, K. Morita, J. Am. Ceram. Soc. 98 (2015) 3996-4002.
DOI URL |
| [16] |
K. Eiermannc, Rubber Chem. Technol. 39 (1966) 841-857.
DOI URL |
| [17] |
S. Park, I. Sohn, J. Am. Ceram. Soc. 99 (2016) 612-618.
DOI URL |
| [18] |
J. Yang, Y. Kim, I. Sohn, J. Mater. Res. Technol. 10 (2021) 268-281.
DOI URL |
| [19] | H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, Oxford, 1986. |
| [20] | Thermocouple Materials, National Bureau of Standards Monograph 40, Govern-ment Printing Office, Washington, DC, U.S, 1962. |
| [21] |
Y. Kang, K. Morita, ISIJ Int. 46 (2006) 420-426.
DOI URL |
| [22] |
H.Q. Xie, H. Gu, M. Fujii, X. Zhang, Meas. Sci. Technol. 17 (2005) 208-214.
DOI URL |
| [23] |
E. Carlson, Bur. Stand. J. Res. 9 (1932) 825-832.
DOI URL |
| [24] |
E.M. Levin, H.F. McMurdie, J. Am. Ceram. Soc. 32 (1949) 99-105.
DOI URL |
| [25] |
X.M. Pan, C. Wang, Z.P. Jin, Z. Metallkd. 95 (2004) 40-44.
DOI URL |
| [26] |
S.L. Webb, Chem. Geol. 256 (2008) 92-101.
DOI URL |
| [27] |
M. Potuzak, A.R.L. Nichols, D.B. Dingwell, D.A. Clague, Earth Planet. Sci. Lett. 270 (2008) 54-62.
DOI URL |
| [28] | L.S. Du, J.F. Stebbins, J. Phys. Chem. B 107 (2003) 10 063-10 076. |
| [29] |
H. Shibata, A. Suzuki, H. Ohta, Mater. Trans. 46 (2005) 1877-1881.
DOI URL |
| [30] | W.L. Konijnendijk, The Structure of Borosilicate Glasses, Department of Chem-ical Engineering and Chemistry, 1975 Ph.D. thesis. |
| [31] | Y.D. Yiannopoulos, G.D. Chryssikos, E.I. Kamitsos, Phys. Chem. Glasses 42 (2001) 164-172. |
| [32] | G.D. Chryssikos, J.A. Kapoutsis, A.P. Patsis, E.I. Kamitsos, Spectroc. Acta Pt. A- Molec. Biomolec. Spectr. 47 (1991) 1117-1126. |
| [33] |
B.N. Meera, J. Ramakrishna, J. Non-Cryst. Solids 159 (1993) 1-21.
DOI URL |
| [34] |
A.A. Osipov, L.M. Osipova, Glass Phys. Chem. 35 (2009) 132-140.
DOI URL |
| [35] |
T. Yano, N. Kunimine, S. Shibata, M. Yamane, J. Non-Cryst. Solids 321 (2003) 137-146.
DOI URL |
| [36] | A.A. Osipov, L.M. Osipova, R.T. Zainullina, Phys. Chem. Glasses 56 (2015) 248-254. |
| [37] |
A.A. Osipov, L.M. Osipova, Glass Phys. Chem. 35 (2009) 121-131.
DOI URL |
| [38] | S. Matsumoto, Y. Miura, C. Murakami, T. Nanba, in: Second International Con-ference on Borate Glasses, Crystals and Melts, Abingdon, England, July 22-25, 1997, pp. 173-180. |
| [39] | H. Segawa, T. Yano, S. Shibata, Phys. Chem. Glasses 50 (2009) 79-84. |
| [40] |
H. Deters, A.S.S. de Camargo, C.N. Santos, C.R. Ferrari, A.C. Hernandes, A. Ibanez, M.T. Rinke, H. Eckert, J. Phys. Chem. C 113 (2009) 16216-16225.
DOI URL |
| [41] | Y.D. Yiannopoulos, E.I. Kamitsos, G.D. Chryssikos, J.A. Kapoutsis, in:Second In-ternational Conference on Borate Glasses, Crystals and Melts, Abingdon, Eng-land, July 22-25, 1997, pp. 514-521. |
| [42] |
N. Ohtori, K. Takase, I. Akiyama, Y. Suzuki, K. Handa, I. Sakai, Y. Iwadate, T. Fukunaga, N. Umesaki, J. Non-Cryst. Solids 293-295 (2001) 136-145.
DOI URL |
| [43] |
W.J. Dell, P.J. Bray, S.Z. Xiao, J. Non-Cryst. Solids 58 (1983) 1-16.
DOI URL |
| [44] |
V.K. Michaelis, P.M. Aguiar, S. Kroeker, J. Non-Cryst. Solids 353 (2007) 2582-2590.
DOI URL |
| [45] |
G.E. Jellison, P.J. Bray, J. Non-Cryst. Solids 29 (1978) 187-206.
DOI URL |
| [46] |
B.C. Bunker, R.J. Kirkpatrick, R.K. Brow, J. Am. Ceram. Soc. 74 (1991) 1425-1429.
DOI URL |
| [47] | N. Ohtori, K. Takase, I. Akiyama, K. Handa, Y. Iwadate, N. Umesaki, Phys. Chem. Glasses 41 (20 0 0) 369-372. |
| [48] |
J. Wu, J.F. Stebbins, J. Non-Cryst. Solids 362 (2013) 73-81.
DOI URL |
| [49] |
J. Lorösch, M. Couzi, J. Pelous, R. Vacher, A. Levasseur, J. Non-Cryst. Solids 69 (1984) 1-25.
DOI URL |
| [1] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
| [2] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
| [3] | Zhang Zipei, Li Wenhao, Yu Lu, Wei Sitong, Wei Shikai, Ji Zhen, Song Weiyu, Zheng Shuqi. Defect engineering synergistically modulates power factor and thermal conductivity of CuGaTe2 for ultra-high thermoelectric performance [J]. J. Mater. Sci. Technol., 2022, 128(0): 213-220. |
| [4] | R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance [J]. J. Mater. Sci. Technol., 2022, 116(0): 94-102. |
| [5] | Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. J. Mater. Sci. Technol., 2022, 117(0): 238-250. |
| [6] | Yunhai Zhang, Yongsheng Liu, Liyang Cao, Xutong Zheng, Yejie Cao, Jing Wang, Qing Zhang. Construction of continuous heat conductive channel, a double harvest strategy to enhance thermal conductance and bending strength of C/SiC composites [J]. J. Mater. Sci. Technol., 2022, 105(0): 101-108. |
| [7] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
| [8] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
| [9] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
| [10] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
| [11] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
| [12] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
| [13] | Mengmeng Qin, Yajie Huo, Guoying Han, Junwei Yue, Xueying Zhou, Yiyu Feng, Wei Feng. Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management [J]. J. Mater. Sci. Technol., 2022, 127(0): 183-191. |
| [14] | Rutuja Mandavkar, Shusen Lin, Rakesh Kulkarni, Sanchaya Pandit, Shalmali Burse, Md Ahasan Habib, Puran Pandey, Sundar Kunwar, Jihoon Lee. Dual-step hybrid SERS scheme through the blending of CV and MoS2 NPs on the AuPt core-shell hybrid NPs [J]. J. Mater. Sci. Technol., 2022, 107(0): 1-13. |
| [15] | Liang Xu, Lei Su, Hongjie Wang, Hongfei Gao, Pengfei Guo, Min Niu, Kang Peng, Lei Zhuang, Zhiwei Dai. High-entropy Sm2B2O7 (B=Ti, Zr, Sn, Hf, Y, Yb, Nb, and Ta) oxides with highly disordered B-site cations for ultralow thermal conductivity [J]. J. Mater. Sci. Technol., 2022, 119(0): 182-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat

