J. Mater. Sci. Technol. ›› 2022, Vol. 127: 236-244.DOI: 10.1016/j.jmst.2022.04.009
• Research Article • Previous Articles Next Articles
Xiumei Chena,1, Na Xina,1, Yuxin Lia, Cong Suna, Longhua Lia, Yulong Yingb, Weidong Shia,*(), Yu Liua,*(
)
Received:
2021-11-30
Revised:
2022-02-11
Accepted:
2022-04-02
Published:
2022-11-10
Online:
2022-11-10
Contact:
Weidong Shi,Yu Liu
About author:
liuyu@ujs.edu.cn (Y. Liu)Xiumei Chen, Na Xin, Yuxin Li, Cong Sun, Longhua Li, Yulong Ying, Weidong Shi, Yu Liu. Novel 2D/2D NiCo2O4/ZnCo2O4@rGO/CNTs self-supporting composite electrode with high hydroxyl ion adsorption capacity for asymmetric supercapacitor[J]. J. Mater. Sci. Technol., 2022, 127: 236-244.
Fig. 2. Top view SEM images of (a) NiCo2O4@GO/CNTs and (b) NiCo2O4/ZnCo2O4@rGO/CNTs film. (c, d) TEM and (e) HRTEM images of the NiCo2O4/ZnCo2O4. (f) TEM and (g-j) corresponding elemental mapping images of O, Co, Zn, and Ni in NiCo2O4/ZnCo2O4.
Fig. 3. (a) XRD patterns of N@GC, NZ@GC and the standard patterns of NiCo2O4 and ZnCo2O4, (b) XPS spectrum of the survey, (c) Co 2p, (d) Ni 2p, (e) Zn 2p and (f) O 1s of NiCo2O4/ZnCo2O4@rGO/CNTs composites.
Fig. 4. (a) CV curves of GC, N@GC and NZ@GC at 2 mV s?1. (b) GCD curves of GC, N@GC and NZ@GC at 1 A g -1. (c, d) CV and GCD curves of the NZ@GC at various test conditions. (e) Cyclic performance of NZ@GC at 10 A g?1, inset is the SEM image of NiCo2O4/ZnCo2O4 after cycling test. (f) EIS spectra of N@GC and NZ@GC.
Fig. 5. Crystallographic models of (a) NiCo2O4 and NiCo2O4-OH; (b) ZnCo2O4 and ZnCo2O4-OH; (c) NiCo2O4/ZnCo2O4 and NiCo2O4/ZnCo2O4-OH; (d) calculated adsorption energies of OH? on the above three systems.
Fig. 6. (a) CV curves of the NZ@GC composite electrode at scan rates from 2 to 5 mV s?1; (b) relationship between logIp versus logv for the anodic peak and cathodic peak current of NZ@GC; Capacitance contribution rate of NZ@GC at a scan rate of (c) 2 mV s?1, (d) 3.5 mV s?1 and (e) 5 mV s?1, respectively; (f) Capacitive contribution percentage of the surface contribution at different scan rates.
Fig. 7. (a) Assembly illustration of the NZ@GC//AC hybrid supercapacitor; (b) Comparative CV curves of NZ@GC and AC at 2 mV s?1; (c) CV curves of NZ@GC//AC supercapacitor at 100 mV s?1; (d) CV and (e) GCD curves of the device; (f) Specific capacitance of NZ@GC//AC device.
Fig. 8. (a) Ragone plots of the NZ@GC//AC hybrid supercapacitor compared with other reported supercapacitors. Inset is the picture of the lighting up LEDs by the supercapacitor. (b) Cyclic tests of the as-assembled device at the current density of 10 A g?1 after 9000 cycles.
[1] |
Y. Liu, C.L. Xiang, H.L. Chu, S.J. Qiu, J. McLeod, Z. She, F. Xu, L.X. Sun, Y.J. Zou, J. Mater. Sci. Technol. 37 (2020) 135-142.
DOI URL |
[2] | Y. Liu, X.S. Peng, Appl. Mater. Today 8 (2017) 104-115. |
[3] |
X.Y. Yin, H.J. Li, R.M. Yuan, J.H. Lu, J. Mater. Sci. Technol. 62 (2021) 60-69.
DOI URL |
[4] |
Q.J. Yang, Y. Liu, M. Yan, Y. Lei, W.D. Shi, Chem. Eng. J. 370 (2019) 666-676.
DOI URL |
[5] |
T. Liu, J.H. Liu, L.Y. Zhang, B. Cheng, J.G. Yu, J. Mater. Sci. Technol. 47 (2020) 113-121.
DOI URL |
[6] |
J.C. Wang, S. Kaskel, J. Mater. Chem. 22 (2012) 23710-23725.
DOI URL |
[7] |
B. Arie, H. Ortal, A. Ran, L. Shalom, B. Thierry, A. Doron, J. Mater. Chem. A 5 (2017) 12653-12672.
DOI URL |
[8] |
H.T. Niu, Y. Liu, B.D. Mao, N. Xin, H. Jia, W.D. Shi, Electrochim. Acta 329 (2020) 135130.
DOI URL |
[9] |
Y. Liu, Z.L. Ma, X.M. Chen, Y.L. Ying, W.D. Shi, J. Colloid Interface Sci. 608 (2022) 2246-2256.
DOI URL |
[10] |
L.X. Feng, K. Wang, X. Zhang, X.Z. Sun, C. Li, X.B. Ge, Y.W. Ma, Adv. Funct. Mater. 28 (2018) 1704463.
DOI URL |
[11] |
X.M. Chen, Y. Liu, Q.J. Yang, L.H. Li, Y.L. Ying, W.D. Shi, J. Colloid Interface Sci. 610 (2022) 427-437.
DOI URL |
[12] |
J.J. Mao, J. Iocozzia, J.Y. Huang, K. Meng, Y.K. Lai, Z. Lin, Energy Environ. Sci. 11 (2018) 772-799.
DOI URL |
[13] | B. Wang, T.T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D.L. Wang, S.X. Dou, Energy Storage Mater 24 (2020) 22-51. |
[14] |
C.X. Zhou, T.T. Gao, Y.J. Wang, Q.L. Liu, Z.H. Huang, X.X. Liu, M.Q. Qing, D. Xiao, Small 15 (2019) 1803469.
DOI URL |
[15] |
Y. Liu, N. Xin, Q.J. Yang, W.D. Shi, J. Colloid Interface Sci. 583 (2021) 288-298.
DOI URL |
[16] |
L. Halder, A. Maitra, A.K. Das, R. Bera, S.K. Karan, S. Paria, A. Bera, S.K. Si, B.B. Khatua, Electrochim. Acta 283 (2018) 438-447.
DOI URL |
[17] | W.J. Chu, Z.J. Shi, Y.D. Hou, D.N. Ma, X. Bai, Y.F. Gao, N.J. Yang, ACS Appl. Mater.Interfaces 12 (2020) 2763-2772. |
[18] |
X. Wei, H.Y. Wu, L.L. Li, J. Alloy. Compd. 861 (2021) 158544.
DOI URL |
[19] | X.J. Hong, C.L. Song, Y. Yang, H.C. Tan, G.H. Li, Y.P. Cai, H.X. Wang, ACS Nano 13 (2019) 1923-1931. |
[20] |
X.J. Hong, Q. Wei, Y.P. Cai, B.B. Wu, H.X. Feng, Y. Yu, R.F. Dong, ACS Appl. Mater. Interfaces 9 (2017) 29374-29379.
DOI URL |
[21] |
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Adv. Mater. 30 (2017) 1703663.
DOI URL |
[22] | H.B. Wu, X.W. Lou, Sci. Adv. 3 (2017) 9252. |
[23] |
H. Jia, J. Wang, W.W. Fu, J.H. Hu, Y. Liu, Chem. Eng. J. 391 (2020) 123541.
DOI URL |
[24] |
Y.Z. Liu, G.R. Li, Y. Guo, Y.L. Ying, X.S. Peng, ACS Appl. Mater. Interfaces 9 (2017) 14043-14050.
DOI URL |
[25] |
Z.Q. Xie, X.D. Cui, W.W. Xu, Y. Wang, Electrochim. Acta 229 (2017) 361-370.
DOI URL |
[26] |
H.T. Niu, Y. Zhang, Y. Liu, B.F. Luo, N. Xin, W.D. Shi, J. Mater. Chem. A 7 (2019) 8503-8509.
DOI URL |
[27] |
K. Yadav, R. Bagal, S. Parmar, T.U. Patro, A.C. Abhyankar, Ind. Eng. Chem. Res. 60 (2021) 14225-14238.
DOI URL |
[28] |
Y.P. Huang, Y.E. Miao, H.Y. Lu, T.X. Liu, Chem. Eur. J. 21 (2015) 10100-10108.
DOI URL |
[29] |
X.X. Wu, Y.W. Yang, T. Zhang, B.K. Wang, H.J. Xu, X.B. Yan, Y. Tang, ACS Appl. Mater. Interfaces 11 (2019) 39841-39847.
DOI URL |
[30] |
Y.F. Wang, H.T. Wang, S.Y. Yang, Y. Yue, S.W. Bian, ACS Appl. Mater. Interfaces 11 (2019) 30384-30390.
DOI URL |
[31] |
J. Pu, J. Wang, X.Q. Jin, F.L. Cui, E.H. Sheng, Z.H. Wang, Electrochim. Acta 106 (2013) 226-234.
DOI URL |
[32] |
C. Guan, X.M. Liu, W.N. Ren, X. Li, C.W. Cheng, J. Wang, Adv. Energy Mater. 7 (2017) 1602391.
DOI URL |
[33] |
A.J.C. Mary, A.C. Bose, Appl. Surf. Sci. 425 (2017) 201-211.
DOI URL |
[34] |
A.J.C. Mary, C.I. Sathish, A. Vinu, A.C. Bose, Energy Fuels 34 (2020) 10131-10141.
DOI URL |
[35] |
Y.P. Huang, Y.E. Miao, H.Y. Lu, T.X. Liu, Chem. Eur. J. 21 (2015) 10100-10108.
DOI URL |
[36] |
X. Wang, W.S. Liu, X.H. Lu, P.S. Lee, J. Mater. Chem. 22 (2012) 23114-23119.
DOI URL |
[37] |
Y. Liu, Z.L. Ma, H.T. Niu, Q.J. Yang, H. Jia, W.D. Shi, Inorg. Chem. Front. 7 (2020) 4092-4100.
DOI URL |
[38] |
T.V.M. Sreekanth, R. Ramaraghavulu, S.V.P. Vattikuti, J. Shim, K. Yoo, Mater. Lett. 253 (2019) 450-453.
DOI |
[39] |
C. Jing, X.Y. Song, K.L. Li, Y.M. Zhang, X.Y. Liu, B.Q. Dong, F. Dong, S.L. Zhao, H.C. Yao, Y.X. Zhang, J. Mater. Chem. A 8 (2020) 1697-1708.
DOI URL |
[40] |
H. Adhikari, D. Neupane, C.K. Ranaweera, J. Candler, R.K. Gupta, S. Sapkota, X. Shen, S.R. Mishra, Electrochim. Acta 225 (2017) 514- 524.
DOI URL |
[41] |
P. Su, H. Liu, Z.L. Jin, Appl. Surf. Sci. 571 (2022) 151288.
DOI URL |
[42] | H. Jia, X.Y. Zhu, T.T. Song, J.P. Pan, F. Peng, L.H. Li, Y. Liu, J. Colloid Interface Sci. 7 (2022) 175-185. |
[43] |
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, B. Dunn, Nat. Mater. 12 (2013) 518-522.
DOI URL |
[44] | Z.Y. Xu, J.C. Ren, Q. Meng, X.H. Zhang, C.C. Du, J.H. Chen, ACS Sustain. Chem. Eng. 7 (2019) 12447-1245. |
[45] |
X.F. Lu, D.J. Wu, R.Z. Li, Q. Li, S.H. Ye, Y.X. Tong, G.R. Li, J. Mater. Chem. A 2 (2014) 4706-4713.
DOI URL |
[46] |
H. Jia, Q. Li, C. Li, Y.Y. Song, H.R. Zheng, J.G. Zhao, W.Y. Zhang, X.M. Liu, Z.L. Liu, Y. Liu, Chem. Eng. J. 354 (2018) 254-260.
DOI URL |
[47] |
S.K. Shinde, H.M. Yadav, S. Ramesh, C. Bathula, N. Maile, G.S. Ghodake, H. Dhaygude, D.Y. Kim, J. Mol. Liq. 299 (2020) 112119.
DOI URL |
[48] | Q. Li, C.X. Lu, C.M. Chen, L.J. Xie, Y.D. Liu, Y. Li, Q.Q. Kong, H. Wang, Energy Storage Mater 8 (2017) 59-67. |
[49] |
H. Jiang, K. Yang, P.W. Ye, Q. Huang, L.Y. Wang, S.M. Li, RSC Adv. 8 (2018) 37550-37556.
DOI URL |
[50] |
C.X. Huang, Y.H. Ding, C. Hao, S.S. Zhou, X.H. Wang, H.W. Gao, L.L. Zhu, J.B. Wu, Chem. Eng. J. 378 (2019) 122202.
DOI URL |
[51] |
X.D. Li, R. Ding, L.H. Yi, W. Shi, Q.L. Xu, E.H. Liu, Electrochim. Acta 222 (2016) 1169-1175.
DOI URL |
[1] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
[2] | Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors [J]. J. Mater. Sci. Technol., 2022, 123(0): 34-40. |
[3] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[4] | Hui Wen, Ziyu Yi, Zhenyu Hu, Rui Guo, Xuanwen Liu. Design strategy for low-temperature sulfur etching to achieve high-performance hollow multifunctional electrode material [J]. J. Mater. Sci. Technol., 2022, 119(0): 209-218. |
[5] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[6] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[7] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[8] | Edugulla Girija Shankar, Amit Kumar Das, Jae Su Yu. Entire onion source-derived redox porous carbon electrodes towards efficient quasi-solid-state solar charged hybrid supercapacitor [J]. J. Mater. Sci. Technol., 2022, 125(0): 118-127. |
[9] | Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime [J]. J. Mater. Sci. Technol., 2022, 99(0): 260-269. |
[10] | Xuemin Yin, Hejun Li, Ruimei Yuan, Jinhua Lu. Metal-organic framework derived hierarchical NiCo2O4 triangle nanosheet arrays@SiC nanowires network/carbon cloth for flexible hybrid supercapacitors [J]. J. Mater. Sci. Technol., 2021, 81(0): 162-174. |
[11] | Bing Zhang, Jiankang He, Gaofeng Zheng, Yuanyuan Huang, Chaohung Wang, Peisheng He, Fanping Sui, Lingchao Meng, Liwei Lin. Electrohydrodynamic 3D printing of orderly carbon/nickel composite network as supercapacitor electrodes [J]. J. Mater. Sci. Technol., 2021, 82(0): 135-143. |
[12] | Ali Aldalbahi, Edmund Samuel, Bander S. Alotaibi, Hany El-Hamshary, Sam S. Yoon. Reduced graphene oxide supersonically sprayed on wearable fabric and decorated with iron oxide for supercapacitor applications [J]. J. Mater. Sci. Technol., 2021, 82(0): 47-56. |
[13] | Dinesh J. Ahirrao, Ajay Kumar Pal, Vikalp Singh, Neetu Jha. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device [J]. J. Mater. Sci. Technol., 2021, 88(0): 168-182. |
[14] | Ning Sun, Wen Li, Shuang Wei, Hui Gao, Wei Wang, Shougang Chen. Facile synthesis of lightweight 3D hierarchical NiCo2O4 nanoflowers/reduced graphene oxide composite foams with excellent electromagnetic wave absorption performance [J]. J. Mater. Sci. Technol., 2021, 91(0): 187-199. |
[15] | Pingping Yao, Chenyang Li, Jiali Yu, Shuo Zhang, Meng Zhang, Huichao Liu, Muwei Ji, Guangtao Cong, Tao Zhang, Caizhen Zhu, Jian Xu. High performance flexible energy storage device based on copper foam supported NiMoO4 nanosheets-CNTs-CuO nanowires composites with core-shell holey nanostructure [J]. J. Mater. Sci. Technol., 2021, 85(0): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||