J. Mater. Sci. Technol. ›› 2022, Vol. 127: 245-255.DOI: 10.1016/j.jmst.2022.04.015
• Research Article • Previous Articles Next Articles
Zhiyi Qiana, Nuoya Zhaoa, Chunyao Wangb, Weizhong Yuana,*()
Received:
2022-02-07
Revised:
2022-03-29
Accepted:
2022-04-06
Published:
2022-11-10
Online:
2022-11-10
Contact:
Weizhong Yuan
About author:
* E-mail address: yuanwz@tongji.edu.cn (W. Yuan)Zhiyi Qian, Nuoya Zhao, Chunyao Wang, Weizhong Yuan. Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer[J]. J. Mater. Sci. Technol., 2022, 127: 245-255.
Fig. 1. Schematic illustration of the fabrication of MC—CHO/CMC/CuS/DOX@ZIF-8 injectable self-healing nanocomposite hydrogel and the synergistic photothermal-photodynamic-chemo therapy for breast cancer.
Fig. 2. (a): (i) TEM image of ZIF-8 NPs, (ii) Rh of ZIF-8 NPs measured by DLS, (iii) nitrogen adsorption/desorption isotherms of ZIF-8 NPs at 300 K. (b): (i) TEM image of DOX@ZIF-8 NPs, (ii) Rh of DOX@ZIF-8 NPs measured by DLS, (iii) nitrogen adsorption/desorption isotherms of DOX@ZIF-8 NPs at 300 K. (c) XRD image of ZIF-8 and DOX@ZIF-8 NPs. (d): (i) TEM image, (ii) HR-TEM image, (iii) DLS, and (iv) XRD curve of CuS NPs.
Fig. 3. (a) Hydrogel formation process. (b) Self-healing property of the hydrogel: (i) Block hydrogel, (ii) repatching 0 h, (iii) 4 h, (iv) 8 h, (v) 24 h, and (vi) 48 h. (c) Injectable property of the hydrogel. (d) Rheological analysis of the hydrogels: (i) Storage modulus (G') of the hydrogels formed after mixing solutions with different concentration, (ii) continuous phase strain alternation scans between 1% and 150% (4 wt.% MC—CHO + 4 wt.% CMC), (iii) continuous phase strain alternation scans between 1% and 150% (2 wt.% MC—CHO + 2 wt.% CMC + 0.25 wt.% DOX@ZIF-8 + 0.25 wt.% CuS). (iv) hydrogel formation process of G' and G'' strain scan tests.
Fig. 4. (a) Infrared photographs of hydrogels containing different mass fractions of CuS irradiated with 1 W/cm2 808 nm NIR light for different times. (b) Temperature changes during the above irradiation process. (c) NIR light on-off cycle test.
Fig. 5. (a) Relative UV-vis absorption intensity at 408 nm of DPBF in PBS solution with different concentrations of CuS after different times of NIR light irradiation at 1 W/cm2 808 nm. (b) Cell fluorescence photos of hydrogels containing different mass fractions of CuS under the action of DCFH-DA probe after different times of NIR light irradiation at 1 W/cm2 808 nm, scale bars represent 200 μm.
Fig. 6. Relative cell viability of L929 cells after incubation with different concentrations of extracts containing different components of the hydrogel: (a) 24 h. (b) 48 h.
Fig. 7. (a) Relative cell viability of 4T1 cells in each experimental group after different treatments. Stained photographs of live and dead cells in each experimental group: (b) Control, (c) Gel, (d) Gel + DOX@ZIF-8 + CuS, (e) Gel + DOX@ZIF-8 + CuS + NIR-4 min & cooling, (f) Gel + DOX@ZIF-8 + CuS + NIR-2 min, (g) Gel + DOX@ZIF-8 + CuS + NIR-4 min, (h) Gel + DOX@ZIF-8 + CuS + NIR-6 min, (i) Gel + DOX@ZIF-8 + CuS + NIR-8 min, scale bars represent 200 μm. (***p < 0.001 and ****p < 0.0001, n = 3).
Fig. 8. (a) In vivo photothermal effect of each experimental group of nude mice. (b) Photographs of different tissues of nude mice in each experimental group after execution and autopsy on day 13 of treatment: (I) Tumor: i. PBS, ii. Gel + ZIF-8 + CuS (NIR-), iii. PBS + DOX, iv. Gel + DOX@ZIF-8, v. Gel + DOX@ZIF-8 + CuS (NIR-), vi. PBS + DOX@ZIF-8 + CuS (NIR+), vii. Gel + DOX@ZIF-8 + CuS (NIR+); (II) major organs (heart, liver, spleen, lung and kidney); (III) combined photographs of (I) and (II). (c) Average weight of tumor of each experimental group of nude mice on day 13 of treatment. (*p < 0.05, n = 5). (d) Average relative tumor volume change of each experimental group of nude mice during treatment. (**p < 0.01, n = 5). (e) Average weight change of each experimental group of nude mice during treatment during treatment. (f) HE and Tunel staining of tumor tissue sections of nude mice in each experimental group: (i) PBS, (ii) Gel + ZIF-8 + CuS (NIR-), (iii) PBS + DOX, iv. Gel + DOX@ZIF-8, (v) Gel + DOX@ZIF-8 + CuS (NIR-), (vi) PBS + DOX@ZIF-8 + CuS (NIR+), (vii) Gel + DOX@ZIF-8 + CuS (NIR+), scale bars represent 200 μm.
[1] |
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, CA-Cancer J. Clin. 71 (2021) 209-249.
DOI URL |
[2] |
S.K. Dubey, T. Bhatt, M. Agrawal, R.N. Saha, S. Saraf, S. Saraf, A. Alexander, Int. J. Biol. Macromol. 194 (2022) 521-538.
DOI URL |
[3] |
I. Keklikoglou, C. Cianciaruso, E. Güç, M.L. Squadrito, L.M. Spring, S. Tazzy-man, L. Lambein, A. Poissonnier, G.B. Ferraro, C. Baer, A. Cassará, A. Guichard, M.L. Iruela-Arispe, C.E. Lewis, L.M. Coussens, A. Bardia, R.K. Jain, J.W. Pollard, M. De Palma, Nat. Cell Biol. 21 (2019) 190-202.
DOI PMID |
[4] |
E.A. Mittendorf, H. Zhang, C.H. Barrios, S. Saji, K.H. Jung, R. Hegg, A. Koehler, J. Sohn, H. Iwata, M.L. Telli, C. Ferrario, K. Punie, F. Penault-Llorca, S. Patel, A.N. Duc, M. Liste-Hermoso, V. Maiya, L. Molinero, S.Y. Chui, N. Harbeck, Lancet 396 (2020) 1090-1100.
DOI PMID |
[5] | J. Zhang, Y.Y. Guo, G.F. Pan, P. Wang, Y.H. Li, X.Y. Zhu, C. Zhang, ACS Appl. Mater.Interfaces 12 (2020) 21441-21449. |
[6] | A. Shukla, A.P. Singh, P. Maiti, Signal Transduct. Target. Ther. 6 (2021) 63. |
[7] |
D.Y. Fan, Y. Tian, Z.J. Liu, Front. Chem. 7 (2019) 675.
DOI URL |
[8] |
B.R. Tian, S.Y. Hua, J.Y. Liu, Carbohydr. Polym. 232 (2020) 115805.
DOI URL |
[9] |
H. Khan, H.R. Mirzaei, A. Amiri, E.K. Akkol, S.M.A. Halimi, H. Mirzaei, Semin. Cancer Biol. 69 (2021) 24-42.
DOI URL |
[10] |
D.Y. Pan, X.L. Zheng, M. Chen, Q.F. Zhang, Z.Q. Li, Z.Y. Duan, Q.Y. Gong, Z.W. Gu, H. Zhang, K. Luo, J. Mater. Sci. Technol. 63 (2021) 115-123.
DOI URL |
[11] |
H. Chen, J. Yang, L. Sun, H.R. Zhang, Y.S. Guo, J. Qu, W.Y. Jiang, W. Chen, J. Ji, Y.W. Yang, B.L. Wang, Small 15 (2019) 1903880.
DOI URL |
[12] |
Q.L. Li, Y. Sun, L. Ren, X. Wang, C. Wang, L. Li, Y.W. Yang, X.H. Yu, J.H. Yu, ACS Appl. Mater. Interfaces 10 (2018) 29314-29324.
DOI URL |
[13] |
Z. Li, N. Song, Y.W. Yang, Matter 1 (2019) 345-368.
DOI URL |
[14] |
N. Song, Z. Zhang, P. Liu, Y.W. Yang, L. Wang, D. Wang, B.Z. Tang, Adv Mater 32 (2020) 2004208.
DOI URL |
[15] |
Q.R. Wu, X.W. Chen, P. Wang, Q. Wu, X. Qi, X.J. Han, L.F. Chen, X.W. Meng, K. Xu, ACS Appl. Mater. Interfaces 12 (2020) 8016-8029.
DOI URL |
[16] | A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Signal Transduct. Target. Ther. 4 (2019) 33. |
[17] |
D.N. Zhong, D.X. Zhang, T.T. Xie, M. Zhou, Small 16 (2020) 2000819.
DOI URL |
[18] |
X. Wan, J.J. Beaudoin, N. Vinod, Y. Min, N. Makita, H. Bludau, R. Jordan, A. Wang, M. Sokolsky, A.V. Kabanov, Biomaterials 192 (2019) 1-14.
DOI URL |
[19] |
F.F. Li, J. Lu, J. Liu, C. Liang, M.L. Wang, L.Y. Wang, D.F. Li, H.Z. Yao, Q.L. Zhang, J. Wen, Z.K. Zhang, J. Li, Q.X. Lv, X.J. He, B.S. Guo, D.G. Guan, Y.Y. Yu, L. Dang, X.H. Wu, Y. Li, G.F. Chen, F. Jiang, S.G. Sun, B.T. Zhang, A.P. Lu, G. Zhang, Nat. Commun. 8 (2017) 1390.
DOI URL |
[20] |
D. Shao, J. Li, X. Zheng, Y. Pan, Z. Wang, M. Zhang, Q.X. Chen, W.F. Dong, L. Chen, Biomaterials 100 (2016) 118-133.
DOI PMID |
[21] |
M. Wang, M. Chen, W. Niu, D.D. Winston, W. Cheng, B. Lei, Biomaterials 261 (2020) 120301.
DOI URL |
[22] |
G. Guedes, S. Wang, F. Fontana, P. Figueiredo, J. Lindén, A. Correia, R.J.B. Pinto, S. Hietala, F.L. Sousa, H.A. Santos, Adv. Mater. 33 (2021) 2007761.
DOI URL |
[23] |
H. An, Y. Yang, Z.W. Zhou, Y.Y. Bo, Y. Wang, Y.N. He, D. Wang, J.L. Qin, Acta Biomater 131 (2021) 149-161.
DOI URL |
[24] |
S. Ding, Y.F. Wang, J.N. Li, S.G. Chen, J. Mater. Sci. Technol. 89 (2021) 209-224.
DOI URL |
[25] |
Y.J. Tu, N. Chen, C.P. Li, H.Q. Liu, R. Zhu, S.F. Chen, Q. Xiao, J.H. Liu, S. Ramakr-ishna, L.M. He, Acta Biomater 90 (2019) 1-20.
DOI URL |
[26] |
M. Wu, J.S. Chen, W.J. Huang, B. Yan, Q.Y. Peng, J.F. Liu, L.Y. Chen, H.B. Zeng, Biomacromolecules 21 (2020) 2409-2420.
DOI URL |
[27] |
Q.Q. Leng, Y. Li, P. Zhou, K. Xiong, Y. Lu, Y.X. Cui, B.Q. Wang, Z.X. Wu, L. Zhao, S.Z. Fu, Mater. Sci. Eng. C 129 (2021) 112390.
DOI URL |
[28] |
C. Fiorica, F.S. Palumbo, G. Pitarresi, R. Puleio, L. Condorelli, G. Collura, G. Gi-ammona, Int. J. Pharm. 589 (2020) 119879.
DOI URL |
[29] |
S.Y. Luo, Y. Zhu, Y.P. Li, L. Chen, S.Z. Lv, Y. Zhang, L. Ge, W.W. Zhou, J. Biomed. Nanotechnol. 16 (2020) 842-852.
DOI URL |
[30] |
X.Y. Wei, C.Y. Liu, Z.X. Wang, Y. Luo, Int. J. Pharm. 580 (2020) 119219.
DOI URL |
[31] |
W.P. Wei, H.F. Li, C.C. Yin, F.S. Tang, Drug Deliv 27 (2020) 460-468.
DOI URL |
[32] |
Y. Jiang, N. Krishnan, J. Heo, R.H. Fang, L. Zhang, J. Control. Release. 324 (2020) 505-521.
DOI URL |
[33] |
X. Dong, A.F. Yang, Y. Bai, D.L. Kong, F. Lv, Biomaterials 230 (2020) 119659.
DOI URL |
[34] |
J. Liu, L. Li, R. Zhang, Z.P. Xu, J. Mater. Sci. Technol. 63 (2021) 73-80.
DOI URL |
[35] |
Z.J. Xie, T.J. Fan, J.S. An, W. Choi, Y.H. Duo, Y.Q. Ge, B. Zhang, G.H. Nie, N. Xie, T.T. Zheng, Y. Chen, H. Zhang, J.S. Kim, Chem. Soc. Rev. 49 (2020) 8065-8087.
DOI URL |
[36] |
M. Abbas, Q.L. Zou, S.H. Li, X. Yan, Adv. Mater. 29 (2017) 1605021.
DOI URL |
[37] |
J.M. Chen, T.J. Fan, Z.J. Xie, Q.Q. Zeng, P. Xue, T.T. Zheng, Y. Chen, X.L. Luo, H. Zhang, Biomaterials 237 (2020) 119827.
DOI URL |
[38] |
X. Li, J.F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 17 (2020) 657-674.
DOI URL |
[39] |
M.W. Shi, Z.L. Fu, W. Pan, Y.Y. Chen, K.Y. Wang, P. Zhou, N. Li, B. Tang, Angew. Chem.-Int. Edit. 60 (2021) 13564-13568.
DOI URL |
[40] |
L.P. Zhao, R.R. Zheng, J.Q. Huang, X.Y. Chen, F.A. Deng, Y.B. Liu, C.Y. Huang, X.Y. Yu, H. Cheng, S.Y. Li, ACS Nano 14 (2020) 17100-17113.
DOI URL |
[41] |
D.M. Xi, M. Xiao, J.F. Cao, L.Y. Zhao, N. Xu, S.R. Long, J.L. Fan, K. Shao, W. Sun, X.H. Yan, X.J. Peng, Adv. Mater. 32 (2020) 1907855.
DOI URL |
[42] |
H.S. Jung, P. Verwilst, A. Sharma, J. Shin, J.L. Sessler, J.S. Kim, Chem. Soc. Rev. 47 (2018) 2280-2297.
DOI URL |
[43] | S. Liu, X. Pan, H. Liu, Two-Dimensional Nanomaterials for Photothermal Ther-apy, Angew. Chem.-Int. Edit. 59 (2020) 5890-5900. |
[44] |
K. Hu, L. Xie, Y.D. Zhang, M. Hanyu, Z.M. Yang, K. Nagatsu, H. Suzuki, J. Ouyang, X.Y. Ji, J.J. Wei, H. Xu, O.C. Farokhzad, S.H. Liang, L. Wang, W. Tao, M.R. Zhang, Nat. Commun. 11 (2020) 2778.
DOI URL |
[45] |
X.W. Wang, X.Y. Zhong, Z. Liu, L. Cheng, Nano Today 35 (2020) 100946.
DOI URL |
[46] |
X.J. Huang, W.L. Zhang, G.Q. Guan, G.S. Song, R.J. Zou, J.Q. Hu, Accounts Chem. Res. 50 (2017) 2529-2538.
DOI URL |
[47] |
L.Q. Zhou, F. Chen, Z.S. Hou, Y.W. Chen, X.L. Luo, Chem. Eng. J. 409 (2021) 128224.
DOI URL |
[48] | J. Yang, Y.W. Yang, VIEW 1 (2020) e20. |
[49] |
L. Yue, K. Yang, X.Y. Lou, Y.W. Yang, R. Wang, Matter 3 (2020) 1557-1588.
DOI URL |
[50] |
M. de J. Velásquez-Hernández, M. Linares-Moreau, E. Astria, F. Carraro, M.Z. Alyami, N.M. Khashab, C.J. Sumby, C.J. Doonan, P. Falcaro, Coord. Chem. Rev. 429 (2021) 213651.
DOI URL |
[51] |
Y. Wang, J.H. Yan, N.C. Wen, H.J. Xiong, S.D. Cai, Q.Y. He, Y.Q. Hu, D.M. Peng, Z.B. Liu, Y.F. Liu, Biomaterials 230 (2020) 119619.
DOI URL |
[52] |
Y.J. Sun, L.W. Zheng, Y. Yang, X. Qian, T. Fu, X.W. Li, Z.Y. Yang, H. Yan, C. Cui, W.H. Tan, Nano-Micro Lett 12 (2020) 103.
DOI URL |
[53] |
J. Yang, Y.W. Yang, Small 16 (2020) 1906846.
DOI URL |
[54] |
B. Wang, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Nature 453 (2008) 207-211.
DOI URL |
[55] |
W. Cai, J.Q. Wang, C.C. Chu, W. Chen, C.S. Wu, G. Liu, Adv. Sci. 6 (2019) 1801526.
DOI URL |
[56] |
Z. Zhang, S.G. Li, D. Qiao, N. Hu, Y. Gu, Q.L. Deng, S. Wang, ACS Appl. Mater. Interfaces 13 (2021) 43855-43867.
DOI URL |
[57] |
H.Q. Zheng, Y.N. Zhang, L.F. Liu, W. Wan, P. Guo, A.M. Nyström, X.D. Zou, J. Am. Chem. Soc. 138 (2016) 962-968.
DOI URL |
[58] |
J. Zhuang, C.H. Kuo, L.Y. Chou, D.Y. Liu, E. Weerapana, C.K. Tsung, ACS Nano 8 (2014) 2812-2819.
DOI PMID |
[59] |
Z.J. Wang, W.J. Yu, N. Yu, X. Li, Y.R. Feng, P. Geng, M. Wen, M.Q. Li, H.J. Zhang, Z.G. Chen, Chem. Eng. J. 400 (2020) 125877.
DOI URL |
[60] |
S.N. Li, L.Y. Zhang, X. Liang, T.T. Wang, X.J. Chen, C.M. Liu, L. Li, C.G. Wang, Chem. Eng. J. 378 (2019) 122175.
DOI URL |
[61] |
J. Yang, D.H. Dai, X.Y. Lou, L. Ma, B.L. Wang, Y.W. Yang, Theranostics 10 (2020) 615-629.
DOI PMID |
[62] |
X.R. Deng, S. Liang, X.C. Cai, S.S. Huang, Z.Y. Cheng, Y.S. Shi, M.L. Pang, P.A. Ma, J. Lin, Nano Lett 19 (2019) 6772-6780.
DOI URL |
[63] |
C.Y. Wang, C.Y. Liang, R. Wang, X.L. Yao, P. Guo, W.Z. Yuan, Y. Liu, Y. Song, Z.H. Li, X.Y. Xie, Biomater. Sci. 8 (2020) 313-324.
DOI URL |
[64] |
X.R. Chen, R.L. Tong, Z.Q. Shi, B. Yang, H. Liu, S.P. Ding, X. Wang, Q. Lei, J. Wu, W.J. Fang, ACS Appl. Mater. Interfaces 10 (2018) 2328-2337.
DOI URL |
[65] |
F.Y. Li, Y. Du, J.N. Liu, H. Sun, J. Wang, R.Q. Li, D. Kim, T. Hyeon, D. Ling, Adv. Mater. 30 (2018) 1802808.
DOI URL |
[66] |
F. Gong, L. Cheng, N.L. Yang, O. Betzer, L.Z. Feng, Q. Zhou, Y.G. Li, R.H. Chen, R. Popovtzer, Z. Liu, Adv. Mater. 31 (2019) 1900730.
DOI URL |
[67] |
L.S. Lin, J.B. Song, L. Song, K.M. Ke, Y. Liu, Z.J. Zhou, Z.Y. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H.H. Yang, X.Y. Chen, Angew. Chem.-Int. Edit. 57 (2018) 4902-4906.
DOI URL |
[68] |
Z.T. Xu, C. Pan, W.Z. Yuan, Biomater. Sci. 8 (2020) 3348-3358.
DOI URL |
[69] |
C.Y. Wang, N.Y. Zhao, Y.X. Huang, R. He, S.C. Xu, W.Z. Yuan, Chem. Eng. J. 401 (2020) 126100.
DOI URL |
[70] |
L.B. Li, J. Gu, J. Zhang, Z.G. Xie, Y.F. Lu, L.Q. Shen, Q.R. Dong, Y.Y. Wang, ACS Appl. Mater. Interfaces 7 (2015) 8033-8040.
DOI URL |
[1] | Chunyan Wu, Guofang Zhou, Dun Mao, Zihan Zhang, Yiliang Wu, Wenjian Wang,Linbao Luo, Li Wang, Yongqiang Yu, Jigang Hu, Zhifeng Zhu, Yan Zhang, Jiansheng Jie. CTAB Assisted Synthesis of CuS Microcrystals: Synthesis, Mechanism, and Electrical Properties [J]. J. Mater. Sci. Technol., 2013, 29(11): 1047-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||