J. Mater. Sci. Technol. ›› 2022, Vol. 127: 256-267.DOI: 10.1016/j.jmst.2022.05.023
• Research Article • Previous Articles
Caiyan Gaoa,1, Xuezhen Fengb,1, Lian Yia, Xiaoyong Wua,*(), Renji Zhengb, Gaoke Zhanga, Yubiao Lia,*(
)
Received:
2022-03-17
Revised:
2022-04-12
Accepted:
2022-05-10
Published:
2022-11-10
Online:
2022-11-10
Contact:
Xiaoyong Wu,Yubiao Li
About author:
yubiao.li@whut.edu.cn (Y. Li)Caiyan Gao, Xuezhen Feng, Lian Yi, Xiaoyong Wu, Renji Zheng, Gaoke Zhang, Yubiao Li. Peroxymonosulfate activation based on Co9S8@N−C: A new strategy for highly efficient hydrogen production and synchronous formaldehyde removal in wastewater[J]. J. Mater. Sci. Technol., 2022, 127: 256-267.
Fig. 1. (a) Schematic diagram for the preparation of Co9S8@N?C. (b) SEM, (c) TEM and, (d) HRTEM images of Co9S8@N?C. (e) XRD patterns of Co9S8@N?C, N?C and, Co9S8. (f) N2 adsorption-desorption isotherms (the inset: pore size distribution curves) and (g) Raman spectra of Co9S8@N?C and Co9S8. XPS spectra of Co9S8@N?C: (h) Co 2p, (i) C 1s and (j) N 1s.
Fig. 2. (a) Hydrogen evolution in dehydrogenation of FA and (b) corresponding FA degradation efficiency over Co9S8@N?C/PMS system; NaOH concentration = 0.6 mol L?1; FA concentration= mol L?1; T = 25 °C. (c) Hydrogen evolution of different reaction systems in dehydrogenation of FA and (d) hydrogen evolution of different catalysts in FA dehydrogenation over Co9S8@N?C/PMS system; NaOH concentration = 0.6 mol L?1; FA concentration = 0.722 mol L?1; PMS = 0.3 g L?1; Cata. = 0.2 g L?1; T = 25 °C.
Fig. 3. (a) Hydrogen evolution from a FA solution with different FA concentrations over Co9S8@N?C/PMS system and (b) corresponding FA removal efficiency. (c) Hydrogen production and (d) FA removal performances of Co9S8@N?C/PMS system in different water systems (Han River, Yangtza River and Donghu Lake) with a concentration of 0.722 mol L?1. NaOH concentration = 0.6 mol L?1; Cata. = 0.5 g L?1; PMS = 0.4 g L?1; T = 25 °C.
Fig. 4. Hydrogen evolution from FA solution over Co9S8@N?C/PMS system with (a) different dosage of Co9S8@N?C, (b) PMS, and (c) NaOH. (d) Effect of temperature on hydrogen evolution from a FA solution over Co9S8@N?C/PMS system. NaOH concentration = 0.6 mol L?1; HCHO concentration = 0.722 mol L?1; PMS = 0.3 g L?1; Cata. = 0.2 g L?1; T = 25 °C.
Fig. 5. (a) Effect of (a) Cl?, (b) NO3? and (c) HCO3? on H2 evolution from a HCHO solution over Co9S8@N?C/PMS system; NaOH concentration = 0.6 mol L?1; Cata. = 0.2 g L?1; PMS = 0.3 g L?1; T = 25 °C.
Fig. 7. (a) Hydrogen evolution from FA and methanol solution; FA/methanol concentration = 0.722 mol L?1; NaOH concentration = 0.6 mol L?1; Cata. = 0.5 g L?1; PMS = 0.4 g L?1; T = 25 °C. (b) FA degradation efficiency with and without methanol: FA concentration = 0.003 mol L?1 (The highest concentration of methanol-free FA solution available in the market is 0.003 mol L?1); NaOH concentration = 0.6 mol L?1; T = 25 °C; Cata. = 0.5 g L?1; PMS = 0.4 g L?1. (c) Hydrogen evolution from FA solution and (d) corresponding FA degradation efficiency in different atmospheres, FA concentration = 0.722 mol L?1; NaOH concentration = 0.6 mol L?1; Cata. = 0.5 g L?1; PMS = 0.4 g L?1; T = 25 °C.
Fig. 8. (a) Polarization curves with scan rate of 5 mV s?1, (b) cyclic voltammetry (CV) curves with scan rate of 50 mV s?1, (c) Nyquist plots, and (d) I-t curves of Co9S8@N?C and Co9S8. The structure of PMS absorbed on (e) Co9S8(1)/PMS and (g) Co9S8(1)N?C/PMS. The charge difference distribution of (f) Co9S8(1)@N?C/PMS and (h) Co9S8(1)@N?C/PMS.
Fig. 9. (a) Hydrogen evolution from FA degradation of Co9S8@N?C/PMS system with respect to various scavengers. The identification of different reactive oxidizing species recorded by using (b) DMPO (water serves as solvent), (c) TEMP, and (d) DMPO (methanol serves as solvent).
[1] |
X. Mei, Z.W. Guo, J. Liu, S.Q. Bi, P.P. Li, Y. Wang, W.T. Shen, Y. Yang, Y.H. Wang, Y.Y. Xiao, X. Yang, Y. Liu, L. Zhao, Y.T. Wang, S. Hu, Chem. Eng. J. 372 (2019) 673-683.
DOI URL |
[2] |
S.J. Xia, G. Zhang, Y. Meng, C. Yang, Z.M. Ni, J. Hu, Appl. Catal. B-Environ. 278 (2020) 119266.
DOI URL |
[3] |
Y. Gong, X.R. Zhou, X.M. Ma, J.P. Chen, J. Clean. Prod. 181 (2018) 1-7.
DOI URL |
[4] |
M.A. Kebede, T. Imae, Sabrina, C.M. Wu, K.B. Cheng, Chem. Eng. J. 311 (2017) 340-347.
DOI URL |
[5] |
J.W. Ye, Y. Yu, J.J. Fan, B. Cheng, J.G. Yu, W.K. Ho, Environ. Sci. Nano 7 (2020) 3655-3709.
DOI URL |
[6] |
X.J. Tang, Y. Bai, A. Duong, M.T. Smith, L.Y. Li, L.P. Zhang, Environ. Int. 35 (2009) 1210-1224.
DOI URL |
[7] |
J.R. Guimaraes, C.R.T. Farah, M.G. Maniero, P.S. Fadini, J. Environ. Manag. 107 (2012) 96-101.
DOI URL |
[8] |
G.L. Liu, J.H. Zhou, W.N. Zhao, Z.M. Ao, T.C. An, Chin. Chem. Lett. 31 (2020) 1966-1969.
DOI URL |
[9] |
Z.H. Dai, D.D. Li, Z.M. Ao, S.B. Wang, T.C. An, J. Hazard. Mater. 405 (2021) 124684.
DOI URL |
[10] |
W.L. Zhen, X.F. Ning, B.J. Yang, Y.Q. Wu, Z. Li, G.X. Lu, Appl. Catal. B-Environ. 221 (2018) 243-257.
DOI URL |
[11] |
F.F. Cai, Y.J. Guo, J.J. Ibrahim, J. Zhang, Y.H. Sun, Appl. Catal. B-Environ. 299 (2021) 120648.
DOI URL |
[12] |
Z.Q. Zhou, L.L. Zeng, G.W. Xiong, L.J. Yang, H.F. Yuan, J.Y. Yua, S.J. Xu, D.F. Wang, X.l. Zhang, H. Liu, W.J. Zhou, Chem. Eng. J. 426 (2021) 129214.
DOI URL |
[13] | M.K. Awasthi, S.K. Singh, Sustain. Energy Fuels 5 (2021) 549-555. |
[14] |
L.L. Du, K.C. Qian, X.H. Zhu, X.Q. Yan, H. Kobayashi, Z.Q. Liu, Y.P. Lou, R.H. Li, J. Mater. Chem. A 7 (2019) 8855-8864.
DOI URL |
[15] |
R.H. Li, X.H. Zhu, X.Q. Yan, H. Kobayashi, S. Yoshida, W.X. Chen, L.L. Du, K.C. Qjan, B.L. Wu, S.H. Zou, L.F. Lu, W.Z. Yi, Y.H. Zhou, J. Fan, ACS Catal. 7 (2017) 1478-1484.
DOI URL |
[16] |
K.C. Qian, L.L. Du, X.H. Zhu, S.P. Liang, S. Chen, H. Kobayashi, X.Q. Yan, M. Xu, Y.H. Dai, R.H. Li, J. Mater. Chem. A 7 (2019) 14592-14601.
DOI URL |
[17] |
H.X. Liu, M. Wang, X.Q. Zhang, J.T. Ma, G.X. Lu, Appl. Catal. B-Environ. 237 (2018) 563-573.
DOI URL |
[18] |
S. Guo, X. Li, J. Li, B.Q. Wei, Nat. Commun. 12 (2021) 1-10.
DOI URL |
[19] |
W.D. Li, Y.X. Zhao, Y. Liu, M.Z. Sun, Geoffrey I.N. Waterhouse, B.L. Huang, K. Zhang, T.R. Zhang, S.Y. Lu, Angew. Chem. Int. Ed. 60 (2021) 3290-3298.
DOI URL |
[20] |
X.Y. Wu, W.H. Zhao, Y.H. Huang, G.K. Zhang, Chem. Eng. J. 381 (2020) 122768.
DOI URL |
[21] |
S.S. Zhu, X.C. Huang, F. Ma, L. Wang, X.G. Duan, S.B. Wang, Environ. Sci. Tech-nol. 52 (2018) 8649-8658.
DOI URL |
[22] |
Q.B. Liao, D.N. Wang, C. Ke, Y.Y. Zhang, Q.W. Han, Y.F. Zhang, K. Xi, Appl. Catal. B-Environ. 298 (2021) 120548.
DOI URL |
[23] |
T. Zhang, Y. Chen, Y.R. Wang, J.L Roux, Y. Yang, J.P. Croue, Environ. Sci. Technol. 48 (2014) 5868-5875.
DOI PMID |
[24] |
X.Y. Mi, P.F. Wang, S.Z. Xu, L.N. Su, H. Zhong, H.T. Wang, Y. Li, S.H. Zhan, Angew. Chem. Int. Ed. 60 (2021) 4588-4593.
DOI URL |
[25] |
S.S. Yang, X.D. Duan, J.Q. Liu, P.X. Wu, C.Q. Li, X.B. Dong, N.W. Zhu, D.D. Diony-siou, Appl. Catal. B-Environ. 267 (2020) 118701.
DOI URL |
[26] | S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristall 220 (2005) 567-570. |
[27] |
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
DOI PMID |
[28] |
H.B. Lin, S.L. Zhang, T.R. Zhang, S. Cao, H.L. Ye, Q.F. Yao, G.Y.W. Zheng, J.Y. Lee, ACS Nano 13 (2019) 7073-7082.
DOI URL |
[29] |
S.S. Yang, Z.Y. Huang, P.X. Wu, Y.H. Li, X.B. Dong, C.Q. Li, N.Y. Zhu, X.D. Duan, D.D. Dionysiou, Appl. Catal. B-Environ. 260 (2020) 118129.
DOI URL |
[30] |
S.J. Ye, G.M. Zeng, X.F. Tan, H.P. Wu, J. Liang, B. Song, N. Tang, P. Zhang, Y.Y. Yang, Q. Chen, X.P. Li, Appl. Catal. B-Environ. 269 (2020) 118850.
DOI URL |
[31] |
W. Li, Z.M. Wang, H.Y. Liao, X. Liu, L.X. Zhou, Y.Q. Lan, J.G. Zhang, Chem. Eng. J. 417 (2021) 128121.
DOI URL |
[32] | E.T. Yun, G.H. Moon, H. Lee, T.H. Jeon, C. Lee, W. Choi, J. Lee, Appl. Catal. B-En-viron. 237 (2018) 432-441. |
[33] |
P.P. Wang, X.L. Liu, W. Qiu, F.H. Wang, H.C. Jiang, M.S. Chen, W. Zhang, J. Ma, Water Res. 182 (2020) 116030.
DOI URL |
[34] | J. Moreno-Andres, G. Farinango, L. Romero-Martinez, A. Acevedo-Merino, E. Nebot, Water Res. 163 (2019) 1-10. |
[35] |
A. Ghauch, A. Baalbaki, M. Amasha, R. El Asmar, O. Tantawi, Chem. Eng. J. 317 (2017) 1012-1025.
DOI URL |
[36] |
B.J. Sun, W.J. Ma, N. Wang, P. Xu, L.J. Zhang, B.N. Wang, H.H. Zhao, K.Y.A. Lin, Y.C. Du, Environ. Sci. Technol. 53 (2019) 9771-9780.
DOI URL |
[37] |
R. Luo, M.Q. Li, C.H. Wang, M. Zhang, M.A.N. Khan, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang, J.S. Li, Water Res. 148 (2019) 416-424.
DOI URL |
[38] |
Y. Zhao, H.Z. An, J. Feng, Y.M. Ren, J. Ma, Environ. Sci. Technol. 53 (2019) 4500-4510.
DOI URL |
[39] |
X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Appl. Catal. B-Environ. 80 (2008) 116-121.
DOI URL |
[40] |
Y.F. Qi, J. Li, Y.Q. Zhang, Q. Cao, Y.M. Si, Z.R. Wu, M. Akram, X. Xu, Appl. Catal. B-Environ. 286 (2021) 119910.
DOI URL |
[41] |
W.Y. Du, Q.Z. Zhang, Y.N. Shang, W. Wang, Q. Li, Q.Y. Yue, B.Y. Gao, X. Xu, Appl. Catal. B-Environ. 262 (2020) 118302.
DOI URL |
[42] |
X.T. Chen, T. Zhang, M. Kan, D.G. Song, J.P. Jia, Y.X. Zhao, X.F. Qian, Environ. Sci. Technol. 54 (2020) 13344-13353.
DOI URL |
[43] |
F. Xiao, Z.N. Wang, J.Q. Fan, T. Majima, H.Y. Zhao, G.H. Zhao, Angew. Chem. Int. Ed. 60 (2021) 10375-10383.
DOI PMID |
[44] |
R.J. Xie, J. Ji, H.B. Huang, D.X. Lei, R.M. Fang, Y.J. Shu, Y.J. Zhan, K.H. Guo, D.Y.C. Leung, Chem. Eng. J. 341 (2018) 383-391.
DOI URL |
[45] |
L. Yang, H. Chen, F.F. Jia, W.J. Peng, X. Tian, L. Xia, X.Y. Wu, S.X. Song, ACS Appl. Mater. Interfaces 13 (2021) 14355-14367.
DOI URL |
[46] |
G.D. Mao, P.D. Thomas, M.J. Poznansky, Free Radic. Biol. Med. 16 (1994) 493-500.
DOI URL |
[47] |
S.P. Liang, S. Chen, Z.W. Guo, Z.H. Lan, H. Kobayashi, X.Q. Yan, R.H. Li, Catal. Sci. Technol. 9 (2019) 5292-5300.
DOI URL |
[1] | Chen Yang, Yukun Zhu, Yiming Liu, Hongwei Wang, Dongjiang Yang. Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting [J]. J. Mater. Sci. Technol., 2022, 125(0): 59-66. |
[2] | Lili Zhu, Bingbing Yang, Ziqiang Wu, Changdian Li, Han Li, Hui Li, Yanan Huang, Xiaoguang Zhu, Xuebin Zhu, Yuping Sun. Metal/antiperovskite metal nitride composites Ag/AgNNi3 as novel efficient electrocatalysts for hydrogen evolution reaction in alkaline media [J]. J. Mater. Sci. Technol., 2022, 112(0): 222-229. |
[3] | Junxian Bai, Weilin Chen, Rongchen Shen, Zhimin Jiang, Peng Zhang, Wei Liu, Xin Li. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J. Mater. Sci. Technol., 2022, 112(0): 85-95. |
[4] | Xibao Li, Qiuning Luo, Lu Han, Fang Deng, Ya Yang, Fan Dong. Enhanced photocatalytic degradation and H2 evolution performance of N-CDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly [J]. J. Mater. Sci. Technol., 2022, 114(0): 222-232. |
[5] | Shuo Li, Jinyan Xiong, Xueteng Zhu, Weijie Li, Rong Chen, Gang Cheng. Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (M = W, Mo) co-catalysts [J]. J. Mater. Sci. Technol., 2022, 101(0): 242-263. |
[6] | Wangwang Qian, Zhe Chen, Jinfeng Zhang, Lichang Yin. Monolayer MoSi2N4-x as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction [J]. J. Mater. Sci. Technol., 2022, 99(0): 215-222. |
[7] | Guocheng Huang, Guiyun Lin, Qing Niu, Jinhong Bi, Ling Wu. Covalent triazine-based frameworks confining cobalt single atoms for photocatalytic CO2 reduction and hydrogen production [J]. J. Mater. Sci. Technol., 2022, 116(0): 41-49. |
[8] | Chao Liu, Yulong Zhang, Jiaxin Wu, Hailu Dai, Chengjian Ma, Qinfang Zhang, Zhigang Zou. Ag-Pd alloy decorated ZnIn2S4 microspheres with optimal Schottky barrier height for boosting visible-light-driven hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 114(0): 81-89. |
[9] | Weijie Zhang, Xizhong Zhou, Jinzhao Huang, Shouwei Zhang, Xijin Xu. Noble metal-free core-shell CdS/iron phthalocyanine Z-scheme photocatalyst for enhancing photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2022, 115(0): 199-207. |
[10] | Xiang Peng, Yujiao Yan, Shijian Xiong, Yaping Miao, Jing Wen, Zhitian Liu, Biao Gao, Liangsheng Hu, Paul K. Chu. Se-NiSe2 hybrid nanosheet arrays with self-regulated elemental Se for efficient alkaline water splitting [J]. J. Mater. Sci. Technol., 2022, 118(0): 136-143. |
[11] | Gaoqi Tian, Songrui Wei, Zhangtao Guo, Shiwei Wu, Zhongli Chen, Fuming Xu, Yang Cao, Zheng Liu, Jieqiong Wang, Lei Ding, Jinchun Tu, Hao Zeng. Hierarchical NiMoP2-Ni2P with amorphous interface as superior bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Sci. Technol., 2021, 77(0): 108-116. |
[12] | Yuxi Ren, Shengli Zhu, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 95(0): 70-77. |
[13] | Shumin Zhang, Hu Dong, Changsheng An, Zhongfu Li, Difa Xu, Kaiqiang Xu, Zhaohui Wu, Jie Shen, Xiaohua Chen, Shiying Zhang. One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution [J]. J. Mater. Sci. Technol., 2021, 75(0): 59-67. |
[14] | Yao Pang, Wence Xu, Shengli Zhu, Zhenduo Cui, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo. Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting [J]. J. Mater. Sci. Technol., 2021, 82(0): 96-104. |
[15] | Man Zhang, Di Hu, Zhenhao Xu, Biying Liu, Mebrouka Boubeche, Zuo Chen, Yuchen Wang, Huixia Luo, Kai Yan. Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction [J]. J. Mater. Sci. Technol., 2021, 72(0): 172-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||