J. Mater. Sci. Technol. ›› 2022, Vol. 127: 183-191.DOI: 10.1016/j.jmst.2022.04.013
• Research Article • Previous Articles Next Articles
Mengmeng Qina,b, Yajie Huoa, Guoying Hanc, Junwei Yuea, Xueying Zhoua, Yiyu Fenga,b, Wei Fenga,b,*()
Received:
2022-03-31
Revised:
2022-04-10
Accepted:
2022-04-11
Published:
2022-11-10
Online:
2022-11-10
Contact:
Wei Feng
About author:
* E-mail address: weifeng@tju.edu.cn (W. Feng)Mengmeng Qin, Yajie Huo, Guoying Han, Junwei Yue, Xueying Zhou, Yiyu Feng, Wei Feng. Three-dimensional boron nitride network/polyvinyl alcohol composite hydrogel with solid-liquid interpenetrating heat conduction network for thermal management[J]. J. Mater. Sci. Technol., 2022, 127: 183-191.
Fig. 2. SEM images of (a) BNNS, (b) MS, (c) BNNS@MS, and the element mapping images of (e) B, and (f) N element of (d) BNNS@MS in high magnification. (g) Image of the Tyndall effect of the h-BN and BNNS aqueous solution. (h) XRD patterns of h-BN and BNNS. (i) TGA curves of BNNS, MS and BNNS@MS.
Fig. 3. Stress-strain curves of (a) pure PVA hydrogels with different freeze-thaw cycles (PVA: 10 wt.%), (b) BNNS/PVA hydrogels with different BNNS content (PVA: 10 wt.%, freeze-thaw cycle of 5), (c) BNNS/PVA hydrogel (BNNS: 5.5 wt.%) and BNNS@MS/PVA hydrogel (BNNS: 6 wt.%). (d) Images of the compression rebound process. (e) Diagram of interfacial interaction of composite materials.
Fig. 4. Heat conduction of composite hydrogel. (a) к of PVA hydrogel as a function of the PVA loading. (b) к of PVA hydrogel as a function of the freeze-thaw cycle. (c) к of composite hydrogel as a function of dispersed BNNS loading (PDA coating time, 30 min). (d) к of composite hydrogel as a function of PDA coating time (dispersed BNNS content, 5.5 wt.%). (e) Schematic diagram of heat transfer mechanism of composite hydrogels. (f) Diffusion of ferric nitrate in PVA hydrogel.
Fig. 5. (a) Thermal conduction simulation of composite hydrogels with different network structures. (b) Top surface temperature and (c) bulk temperature curves of composite hydrogel.
Fig. 6. (a) Schematic diagram of the composite as thermal management material. (b) Periodic cooling curve of hydrogel and PDMS based thermal interface material to the heat source.
[1] |
F. Zhang, Y.Y. Feng, W. Feng, Mater. Sci. Eng. R 142 (2020) 100580.
DOI URL |
[2] |
J.W. Gu, K.P. Ruan, Nano Micro Lett. 13 (2021) 118-126.
DOI URL |
[3] |
X.T. Yang, C.B. Laing, T.B. Ma, Y.Q. Guo, J. Kong, J.W. Gu, M.J. Chen, Z.H. Zhu, Adv. Compos. Hybrid Mater. 1 (2018) 207-230.
DOI URL |
[4] | Q.W. Yan, F.E. Alam, J.Y. Gao, W. Dai, X. Tan, L. Lv, J.J. Wang, H. Zhang, D. Chen, K. Nishimura, L.P. Wang, J.H. Yu, J.B. Lu, R. Sun, R. Xiang, S. Maruyama, H. Zhang, S.D. Wu, N. Jiang, C.T. Lin, Adv. Funct. Mater. 23 (2021) 889-902. |
[5] |
W. Feng, M.M. Qin, Y.Y. Feng, Carbon 109 (2016) 575-597.
DOI URL |
[6] |
A. Yazdan, J.Z. Wang, B.K. Hu, W.S. Xie, L.Y. Zhao, C.W. Nan, L.L. Li, Rare Met. 39 (2019) 375-382.
DOI URL |
[7] |
C.P. Feng, L.B. Chen, G.L. Tian, L. Bai, R.Y. Bao, Z.Y. Liu, K. Ke, M.B. Yang, W. Yang, Chem. Eng. J. 392 (2020) 123784.
DOI URL |
[8] |
K.P. Ruan, Y.Q. Guo, J.W. Gu, Macromolecules 54 (2021) 4934-4944.
DOI URL |
[9] |
B. Sun, X.Y. Huang, npj Flex. Electron. 5 (2021) 12.
DOI URL |
[10] |
M.J. Feng, Y.M. Pan, M.T. Zhang, Q.S. Gao, C.T. Liu, C.Y. Shen, X.H. Liu, Compos. Sci. Technol. 206 (2021) 108666.
DOI URL |
[11] |
S. Shen, A. Henry, J. Tong, R.T. Zheng, G. Chen, Nat. Nanotechnol. 5 (2010) 251-255.
DOI URL |
[12] |
X.F. Xu, J. Zhou, J. Chen, Adv. Funct. Mater. 30 (2019) 1904704.
DOI URL |
[13] |
D. Yang, Q.G. Wei, L.Y. Yu, Y.F. Ni, L.Q. Zhang, Compos. Sci. Technol. 202 (2021) 108590.
DOI URL |
[14] |
X. Zhang, W. Fan, T.X. Liu, Compos. Commun. 21 (2020) 100413.
DOI URL |
[15] |
M.M. Qin, Y.X. Xu, R. Cao, W. Feng, L. Chen, Adv. Funct. Mater. 28 (2018) 1805053.
DOI URL |
[16] |
H.Y. Niu, Y.J. Ren, H.C. Guo, K. Orzechowski, S.L. Bai, Compos. Commun. 22 (2020) 100430.
DOI URL |
[17] |
H. Guo, Q. Wang, J. Liu, C.Y. Du, B.A. Li, Appl. Surf. Sci. 487 (2019) 379-388.
DOI URL |
[18] |
H. Yuan, Y. Wang, T. Li, Y. Wang, P. Ma, H. Zhang, W. Yang, M. Chen, W. Dong, Nanoscale 11 (2019) 11360-11368.
DOI PMID |
[19] |
Y. Li, C.D. Gong, C.G. Li, K.P. Ruan, C. Liu, H. Liu, J.W. Gu, J. Mater. Sci. Technol. 82 (2021) 250-256.
DOI URL |
[20] |
Q.R. Jia, L. Shi, Int. J. Heat Mass Transf. 161 (2020) 120268.
DOI URL |
[21] |
M.M. Qin, Y.Y. Feng, T.X. Ji, W. Feng, Carbon 104 (2016) 157-168.
DOI URL |
[22] |
X. Wang, P. Wu, Chem. Eng. J. 348 (2018) 723-731.
DOI URL |
[23] |
Z.Y. Huang, H.H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P.S. Xiao, J.J. Laing, T.F. Zhang, Q. Shi, G.H. Li, Y.S. Chen, Adv. Funct. Mater. 28 (2018) 1704363.
DOI URL |
[24] |
X. Bai, C.X. Zhang, X.L. Zeng, L.L. Ren, R. Sun, J.B. Xu, Compos. Commun. 24 (2021) 100650.
DOI URL |
[25] |
X.T. Shi, R.H. Zhang, K.P. Ruan, T.B. Ma, Y.Q. Guo, J.W. Gu, J. Mater. Sci. Technol. 82 (2021) 239-249.
DOI URL |
[26] |
H.M. Fang, S.L. Bai, C.P. Wong, Compos. Part A Appl. Sci. Manuf. 112 (2018) 216-238.
DOI URL |
[27] |
L.B. Shao, L.Y. Shi, X.H. Li, N. Song, P. Ding, Compos. Sci. Technol. 135 (2016) 83-91.
DOI URL |
[28] | X. Zhang, K. Wu, Y.H. Liu, B.W. Yu, Q. Zhang, F. Chen, Q. Fu, Compos. Sci. Tech-nol. 175 (2019) 135-142. |
[29] |
F. Zhang, Y.Y. Feng, M.M. Qin, L. Gao, Z.Y. Li, F.L. Zhao, Z.X. Zhang, F. Lv, W. Feng, Adv. Funct. Mater. 29 (2019) 1901383.
DOI URL |
[30] | N. Mehra, L.W. Mu, T. Ji, X.T. Yang, J. Kong, J.W. Gu, J.H. Zhu, Appl. Mater. Today 12 (2018) 92-130. |
[31] |
W. Dai, L. Lv, T.F. Ma, X.Z. Wang, J.F. Ying, Q.W. Yan, X. Tan, J.Y. Gao, C. Xue, J.H. Yu, Y.G. Yao, Q.P. Wei, R. Sun, Y. Wang, T.H. Liu, T. Chen, R. Xiang, N. Jiang, Q.J. Xue, C.P. Wong, S. Maruyama, C.T. Lin, Adv. Sci. 8 (2021) 2003734.
DOI URL |
[32] |
H.Y. Chen, V.V. Ginzburg, J. Yang, Y.F. Yang, W. Liu, Y. Huang, L.B. Du, B. Chen, Prog. Polym. Sci. 59 (2021) 41-85.
DOI URL |
[33] |
H.T. Yu, Y.Y. Feng, C. Chen, Z.X. Zhang, Y. Cai, M.M. Qin, W. Feng, Carbon 179 (2021) 348-357.
DOI URL |
[34] |
L. Tang, L. Wang, X. Yang, Y.Y. Feng, Y. Li, W. Feng, Prog. Mater. Sci. 115 (2021) 100702.
DOI URL |
[35] | H.H. Bai, Z.X. Zhang, Y.J. Huo, Y.T. Shen, M.M. Qin, W. Feng, J. Mater. Sci. Tech-nol. 98 (2022) 169-176. |
[36] |
H.T. Yu, P.L. Guo, M.M. Qin, G.Y. Han, L. Chen, Y.Y. Feng, W. Feng, Compos. Sci. Technol. 222 (2022) 109406.
DOI URL |
[37] |
F. An, X.F. Li, P. Min, H.F. Li, Z. Dai, Z.Z. Yu, Carbon 126 (2018) 119- 127.
DOI URL |
[38] |
X. Hou, M.J. Wang, L. Fu, Y.P. Chen, N. Jiang, C.T. Lin, Z.W. Wang, J.H. Yu, Nanoscale 10 (2018) 13004-13010.
DOI URL |
[39] |
A.H.A. Wahab, A.P.M. Saad, M.N. Harun, A. Syahrom, M.H. Ramlee, M.A. Sulong, M.R.A. Kadir, J. Mech. Behav. Biomed. Mater. 91 (2019) 406-415.
DOI URL |
[40] |
T. Zhou, X.D. Cheng, Y.L. Pan, C.C. Li, L.L. Gong, Cellulose 26 (2019) 1747-1755.
DOI URL |
[41] |
X.X. Jin, J.F. Wang, L.Z. Dai, X.Y. Liu, L. Li, Y.Y. Yang, Y.X. Cao, W.J. Wang, H. Wu, S.Y. Guo, Chem. Eng. J. 380 (2020) 122475.
DOI URL |
[42] |
N. Tang, Z. Peng, R.L. Guo, M. An, X.D. Chen, X.B. Li, N. Yang, J.F. Zang, Polymers 9 (2017) 688 (Basel).
DOI URL |
[43] |
Y.L. Zhang, Z.L. Ma, K.P. Ruan, J.W. Gu, Nano. Res. 15 (2022) 5601-5609.
DOI URL |
[44] |
Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. 15 (2022) 4747-4755.
DOI URL |
[45] |
N. Li, J.R. Huang, Y. Wang, L.H. Xiao, P. Fu, H.Z. Yu, X.A. Nie, J.C. Jiang, Y.T. Zhu, Z.H. Guo, Compos. Part A Appl. Sci. Manuf. 137 (2020) 106014.
DOI URL |
[46] |
J. Liu, H.B. Zhang, X. Xie, R. Yang, Z.S. Liu, Y.F. Liu, Z.Z. Yu, Small 14 (2018) 1802479.
DOI URL |
[47] |
J.W. Yang, W. Yu, Y. Zhang, C.Q. Liu, H.Q. Xie, Int. Commun. Heat Mass Transf. 127 (2021) 105537.
DOI URL |
[48] |
W.B. Shi, N.J. Song, Y.P. Huang, C. He, M. Zhang, W.F. Zhao, C.S. Zhao, Biomacro-molecules 23 (2022) 889-902.
DOI URL |
[49] |
X.Y. Zhou, Y.H. Guo, F. Zhao, W. Shi, G.H. Yu, Adv. Mater. 32 (2020) 2007012.
DOI URL |
[50] |
R. Cao, M.M. Qin, C. Liu, S.W. Li, P.L. Guo, G.Y. Han, X.H. Hu, W. Feng, L. Chen, ACS Appl. Mater. Interfaces 12 (2020) 14352-14364.
DOI URL |
[51] | Y.H. Guo, L.S. Vasconcelos, N. Manohar, J.F. Geng, K.P. Johnston, G.H. Yu, Angew. Chem. Int. Ed. 61 (2022) e202114074. |
[1] | You Shi, Yang Bai, Yanzhou Lei, Haoruo Zhang, Shengtai Zhou, Huawei Zou, Mei Liang, Yang Chen. Simultaneously enhanced heat dissipation and tribological properties of polyphenylene sulfide-based composites via constructing segregated network structure [J]. J. Mater. Sci. Technol., 2022, 99(0): 239-250. |
[2] | Yang Jianyan, Ren Weijun, Zhao Xinguo, Kikuchi Tatsuya, Miao Ping, Nakajima Kenji, Li Bing, Zhang Zhidong. Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi [J]. J. Mater. Sci. Technol., 2022, 99(0): 55-60. |
[3] | R.W. Yang, Y.P. Liang, J. Xu, X.Y. Meng, J.T. Zhu, S.Y. Cao, M.Y. Wei, R.X. Zhang, J.L. Yang, F. Gao. Rare-earth-niobate high-entropy ceramic foams with enhanced thermal insulation performance [J]. J. Mater. Sci. Technol., 2022, 116(0): 94-102. |
[4] | Xue Tan, Qilong Yuan, Mengting Qiu, Jinhong Yu, Nan Jiang, Cheng-Te Lin, Wen Dai. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review [J]. J. Mater. Sci. Technol., 2022, 117(0): 238-250. |
[5] | Zhilei Wei, Zhejian Zhang, Xiaoyu Zhang, Zhiyuan Li, Tao Li, Jiabin Hu, Shunjian Xu, Zhongqi Shi. Preparation of unidirectional porous AlN ceramics via the combination of freeze casting and combustion synthesis [J]. J. Mater. Sci. Technol., 2022, 100(0): 161-168. |
[6] | Jun Guo, Yu-Ke Zhu, Lin Chen, Zi-Yuan Wang, Zhen-Hua Ge, Jing Feng. High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process [J]. J. Mater. Sci. Technol., 2022, 100(0): 51-58. |
[7] | Yating Wang, Hong Jin, Jiajun Shen, Bijia Wang, Xueling Feng, Zhiping Mao, Yumei Zhang, Xiaofeng Sui. Thermally conductive poly(lactic acid)/boron nitride composites via regenerated cellulose assisted Pickering emulsion approach [J]. J. Mater. Sci. Technol., 2022, 101(0): 146-154. |
[8] | Liang Xu, Lei Su, Hongjie Wang, Hongfei Gao, Pengfei Guo, Min Niu, Kang Peng, Lei Zhuang, Zhiwei Dai. High-entropy Sm2B2O7 (B=Ti, Zr, Sn, Hf, Y, Yb, Nb, and Ta) oxides with highly disordered B-site cations for ultralow thermal conductivity [J]. J. Mater. Sci. Technol., 2022, 119(0): 182-189. |
[9] | Zhuojie Shao, Zhen Wu, Luchao Sun, Xianpeng Liang, Zhaoping Luo, Haikun Chen, Junning Li, Jingyang Wang. High entropy ultra-high temperature ceramic thermal insulator (Zr1/5Hf1/5Nb1/5Ta1/5Ti1/5)C with controlled microstructure and outstanding properties [J]. J. Mater. Sci. Technol., 2022, 119(0): 190-199. |
[10] | De-Zhuang Wang, Wei-Di Liu, Xiao-Lei Shi, Han Gao, Hao Wu, Liang-Cao Yin, Yuewen Zhang, Yifeng Wang, Xueping Wu, Qingfeng Liu, Zhi-Gang Chen. Se-alloying reducing lattice thermal conductivity of Ge0.95Bi0.05Te [J]. J. Mater. Sci. Technol., 2022, 106(0): 249-256. |
[11] | Shaohan Li, Weiwei Sun, Yi Luo, Jin Yu, Litao Sun, Bao-Tian Wang, Ji-Xuan Liu, Guo-Jun Zhang, Igor Di Marco. Pushing the limit of thermal conductivity of MAX borides and MABs [J]. J. Mater. Sci. Technol., 2022, 97(0): 79-88. |
[12] | Tianci Xie, Hui Shi, Hongbin Wang, Qun Luo, Qian Li, Kuo-Chih Chou. Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg-Zn-La/Ce system [J]. J. Mater. Sci. Technol., 2022, 97(0): 147-155. |
[13] | Shiyi Wen, Yong Du, Jing Tan, Yuling Liu, Peng Zhou, Jianzhan Long, George Kaptay. A new model for thermal conductivity of “continuous matrix / dispersed and separated 3D-particles” type composite materials and its application to WC-M (M = Co, Ag) systems [J]. J. Mater. Sci. Technol., 2022, 97(0): 123-133. |
[14] | Ping Zhang, Zhihao Lou, Mengjie Qin, Jie Xu, Jiatong Zhu, Zongmo Shi, Qian Chen, Michael J. Reece, Haixue Yan, Feng Gao. High-entropy (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3 perovskite ceramics with A-site short-range disorder for thermoelectric applications [J]. J. Mater. Sci. Technol., 2022, 97(0): 182-189. |
[15] | Xiaofang Liu, Hengyang Wang, Bin Zhang, Sikang Zheng, Yao Chen, Hong Zhang, Xianhua Chen, Guoyu Wang, Xiaoyuan Zhou, Guang Han. Attaining enhanced thermoelectric performance in p-type (SnSe)1-x(SnS2)x produced via sintering their solution-synthesized micro/nanostructures [J]. J. Mater. Sci. Technol., 2022, 120(0): 205-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||