J. Mater. Sci. Technol. ›› 2022, Vol. 126: 152-160.DOI: 10.1016/j.jmst.2022.03.012
Special Issue: Energy storage materials 2022; Films and coatings 2022; Nano materials 2022
• Research Article • Previous Articles Next Articles
Shunliang Gao, Xiaohui Zhao, Qi Fua, Tianchi Zhanga, Jun Zhua, Fuhua Houa, Jian Nib, Chengjun Zhua, Tiantian Lia,*(
), Yanlai Wanga,*(
), Vignesh Murugadoss, Gaber A.M.Mersale, Mohamed M.Ibrahime, Zeinhom M.El-Bahyf, Mina Huang, Zhanhu Guod,*(
)
Accepted:2022-04-21
Published:2022-11-01
Online:2022-11-10
Contact:
Tiantian Li,Yanlai Wang,Zhanhu Guo
About author:zguo10@utk.edu (Z. Guo).Shunliang Gao, Xiaohui Zhao, Qi Fu, Tianchi Zhang, Jun Zhu, Fuhua Hou, Jian Ni, Chengjun Zhu, Tiantian Li, Yanlai Wang, Vignesh Murugadoss, Gaber A.M.Mersal, Mohamed M.Ibrahim, Zeinhom M.El-Bahy, Mina Huang, Zhanhu Guo. Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells[J]. J. Mater. Sci. Technol., 2022, 126: 152-160.
Fig. 3. (a-c) AFM images of ASA composite films with sparse nested dense structure by different spraying widths; (d) surface depth and slope of the film in the 10-micron range at different spray widths (inset shows ASA composite films profile from AFM); and (e) schematic diagram of roughness slope model for different samples.
Fig. 5. (a) Optical transmittance of ASA composite films with different spray widths (inset shows schematic diagram of nested density structural model and TEM images of the silver nanowires-SWCNTs and pure silver nanowires); (b) effect of AZO thickness on the optical transmittance of composite films (inset shows the ASA films transmission of T550, Taverage (400-1500 nm), and Taverage (600-1500 nm)).
Fig. 6. Sheet resistance of samples increases under: (a) the atmospheric condition; (b) CO2 plasma (inset shows the optical properties of actual samples); (c) boiling water condition with increasing time (inset shows the SEM images for silver nanowires-SWCNTs with and without AZO capping layer).
Fig. 7. (a) Bending test results of the optimized ASA composites and the ASA film (inset shows the bending test results of samples at different bending diameter and actual image of bending test); (b) sheet resistances of silver nanowires-SWCNTs networks and ASA composite flexible thin films with various peeling cycles.
Fig. 8. (a) Schematic diagram of the a-Si:H photovoltaic devices’ structure; (b) J-V curve of photovoltaic devices; (c) attenuation ratio of PCE after bending, the inset is the actual photo-conversion efficiency of photovoltaic devices with different ASA electrode; the SEM images of a-Si:H photovoltaic devices: (d) unbent testing; and (e) bent testing 3000 times; (f) the Ag and C element analysis of the SIMS in the devices.
| Solar cells with different spray widths | PCE (%) | Voc (mV) | FF (%) | Jsc (mA/cm2) | Rs (Ω) |
|---|---|---|---|---|---|
| S1.5 | 6.44 | 817 | 59 | 13.4 | 60 |
| S0.5 | 7.31 | 835 | 55 | 15.8 | 63 |
| S1.5N0.5 | 8.67 | 830 | 60 | 17.3 | 44 |
Table 1. Parameters of amorphous silicon cells.
| Solar cells with different spray widths | PCE (%) | Voc (mV) | FF (%) | Jsc (mA/cm2) | Rs (Ω) |
|---|---|---|---|---|---|
| S1.5 | 6.44 | 817 | 59 | 13.4 | 60 |
| S0.5 | 7.31 | 835 | 55 | 15.8 | 63 |
| S1.5N0.5 | 8.67 | 830 | 60 | 17.3 | 44 |
| [1] | J. Chen, Y. Zhu, Z. Guo, A.G. Nasibulin, Eng. Sci., 12 (2020), pp. 13-22. |
| [2] | A.G. Ricciardulli, S. Yang, G. J.A.H. Wetzelaer, X. Feng, P.W.M. Blom, Adv. Funct. Mater., 28 (2018), Article 1706010. |
| [3] | C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei, D. Jia, M. Wan, S. Li, S. Ji, C. Ye, J. Mater. Chem. C (2017), pp. 2240-2246. |
| [4] | W. Xuan, L. Zhi, K. Müllen, Nano Lett., 8 (2008), pp. 323-327. |
| [5] | X. Chang, L. Chen, J. Chen, Y. Zhu, Z. Guo, Adv. Compos. Hybrid Mater., 4 (2021), pp. 435-450. |
| [6] | N. Jiang, D. Hu, Y. Xu, J. Chen, X. Chang, Y. Zhu, Y. Li, Z. Guo, Adv. Compos. Hybrid Mater., 4 (2021), pp. 574-583. |
| [7] | Y. Yang, Q. Huang, A.W. Metz, J. Ni, S. Jin, Adv. Mater., 16 (2004), pp. 321-324. |
| [8] | J. Li, X.G. Tang, Q.X. Liu, Y.P. Jiang, W.H. Li, Adv. Compos. Hybrid Mater. (2021)April 9, 10.1007/s42114-021-00237-w. |
| [9] | R. Kumar, A. Umar, R. Kumar, M.S. Chauhan, G. Kumar, S. Chauhan, Eng. Sci., 16 (2021), pp. 288-300. |
| [10] | S.A. Mahadik, A. Patil, H.M. Pathan, S.S. Salunke-Gawali, R.J. Butcher, Eng. Sci., 14 (2021), pp. 46-58. |
| [11] | B. Deng, P.C. Hsu, G. Chen, B.N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, Nano Lett., 15 (2015), pp. 4206-4213. |
| [12] | G. Prunet, F. Pawula, G. Fleury, E. Cloutet, A. Pakdel, Mater. Today Phys., 11 (2021), Article 100402. |
| [13] | B. Zayat, P. Das, B.C. Thompson, S.R. Narayan, J. Phys. Chem. C, 125 (2021), pp. 7533-7541. |
| [14] | N. Wen, Z. Fan, S. Yang, Y. Zhao, L. Pan, Nano Energy, 78 (2020), Article 105361. |
| [15] | W. Liu, Y. Zhang, Z.H. Zhang, S.T. Tan, X. Yi, G. Wang, X. Sun, H. Zhu, H.V. Demir, Nano Energy, 12 (2015), pp. 419-436. |
| [16] | J.S. Woo, J.T. Han, S. Jung, J.I. Jang, H.Y. Kim, H.J. Jeong, S.Y. Jeong, K.J. Baeg, G.W. Lee, Sci. Rep., 4 (2014), p. 44804. |
| [17] | G.J. Wang, L.J. Zhao, N.N. Su, New Carbon Mater., 47 (2009), p. 2143. |
| [18] | C. Liu, Y. Lin, Y.F. Dong, Y.K. Wu, Y. Bao, H.X. Yan, J.Z. Ma, Adv. Compos. Hybrid Mater., 3 (2020), pp. 402-414. |
| [19] | B. Zheng, Q. Zhu, Y. Zhao, J. Mater. Sci. Technol., 71 (2021), pp. 221-227. |
| [20] | H. Yu, A.J. Stapleton, D.A. Lewis, L. Wang, J. Materiomics, 3 (2017), pp. 77-82. |
| [21] | Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Angew. Chem. Int. Ed.(2022)in press, 10.1002/anie.202200705. |
| [22] | H. Gao, J. Li, Y. Liu, J. Leng, Adv. Compos. Hybrid Mater., 4 (4) (2021), pp. 957-965. |
| [23] | K. Huang, J. Liu, S. Lin, Y. Wu, E. Chen, Z. He, M. Lei, Adv. Compos. Hybrid Mater., 5 (2021), pp. 220-228. |
| [24] | H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen, X. Liu, Adv. Compos. Hybrid Mater., 4 (3) (2021), pp. 505-513. |
| [25] | Y.X. Han, K.P. Ruan, J.W. Gu, Nano Res. (2022)February 8, 10.1007/s12274-022-4159-z. |
| [26] | H. Ahn, N.C. Kao, W.R. Liu, W.F. Hsieh, IEEE J. Sel. Top. Quantum Electron., 23 (2017), pp. 1-6. |
| [27] | Q. Huang, W. Shen, X. Fang, G. Chen, Y. Yang, J. Huang, R. Tan, W. Song, ACS Appl. Mater. Interfaces, 7 (2015), pp. 4299-4305. |
| [28] | Y. Chen, W. Lan, J. Wang, R. Zhu, Z. Yang, D. Ding, G. Tang, K. Wang, Q. Su, E. Xie, Phys. E Low Dimens. Syst. Nanostruct., 76 (2016), pp. 88-94. |
| [29] | B. Zhou, M. Su, D. Yang, G. Han, C. Shen, ACS Appl. Mater. Interfaces, 36 (2020), pp. 40859-40869. |
| [30] | X. Sun, W. Zha, T. Lin, J. Wei, C.Q. Ma, J. Mater. Sci., 55 (2020), pp. 14893-14906. |
| [31] | K. Hyungsub, P. Yunchan, C. Dahyun, W.S. Chu, A. Sung-Hoon, C. Doo-Man, L.C. Sunyong, Appl. Surf. Sci., 456 (2018), pp. 19-24. |
| [32] | X. Guo, C. Guo, C. Wang, C. Li, X. Sun, Nanoscale Res. Lett., 9 (2014), p. 670. |
| [33] | Y. Lee, M. Suh, K. Kim, H. Kim, D. Kim, H. Chang, D. Lee, Y. Kim, S.W. Kim, D.Y. Jeon, Org. Electron., 1 (2017), pp. 64-69. |
| [34] | F.C. Liang, Y.W. Chang, C.C. Kuo, C.J. Cho, D.H. Jiang, F.C. Jhuang, S.P. Rwei, R. Borsali, Nanoscale, 11 (2019), pp. 1520-1530. |
| [35] | J. Hakyung, P. Sungsik, L. Jongsu, W. Philip, K. Seung-Hwan, L. Dongjin, Adv. Electron. Mater., 4 (2018), Article 1800243. |
| [36] | S.J. Lee, Y.H. Kim, J.K. Kim, H. Baik, J.H. Park, J. Lee, J. Nam, J.H. Park, T.W. Lee, G.R. Yi, Nanoscale, 6 (2014), pp. 11828-11834. |
| [37] | S. Kim, S.Y. Kim, M.H. Chung, J. Kim, J.H. Kim, J. Mater. Chem. C, 3 (2015), pp. 5859-5868. |
| [38] | S. Hu, H. Ji, H. Feng, W. Zhao, J. Wei, M. Li, Nanotechnology, 31 (2020), Article 185303. |
| [39] | Z.R. Zhu, W. Geng, Q. Zhu, A.S. Ethiraj, H.Z. Geng, Nanotechnology, 32 (2020), Article 015708. |
| [40] | J.H. Kim, J. Ma, S. Jo, S. Lee, C.S. Kim, Nanomaterials, 10 (2020), p. 938. |
| [41] | J.J. Huang, J.Y. Lin, Y.L. Hsueh, Nanosci. Nanotechnol. Lett., 8 (2016), pp. 255-259. |
| [42] | H. Lu, D. Zhang, J. Cheng, J. Liu, W.C.H. Choy, Adv. Funct. Mater., 25 (2015), pp. 4211-4218. |
| [43] | T.C. Hauger, S. Al-Rafia, J.M. Buriak, ACS Appl. Mater. Interfaces, 5 (2013), pp. 12663-12671. |
| [44] | Y. Cai, X. Piao, X. Yao, W. Gao, E. Nie, Z. Zhang, Z. Sun, Nanotechnology, 30 (2019), Article 225201. |
| [45] | J. Lee, J.Y. Woo, J.T. Kim, B.Y. Lee, C.S. Han, ACS Appl. Mater. Interfaces, 6 (2014), pp. 10974-10980. |
| [46] | S. Yu, X. Liu, M. Wu, H. Dong, L. Li, ACS Appl. Mater. Interfaces, 13 (2021), pp. 14470-14478. |
| [47] | A.J. Stapleton, R.A. Afre, A.V. Ellis, J.G. Shapter, G.G. Andersson, J.S. Quinton, D.A. Lewis, Sci. Technol. Adv. Mater., 14 (2013), Article 035004. |
| [48] | N. Ren, J. Zhu, P. Shi, Q. Shan, T. Li, C.C. Wei, Y. Zhao, X. Zhang, Sol. Energy, 171 (2018), pp. 907-913. |
| [49] | M.X. Jing, C. Han, M. Li, X.Q. Shen, Nanoscale Res. Lett., 9 (2014), p. 588. |
| [50] | Y. Li, P. Cui, L. Wang, H. Lee, K. Lee, H. Lee, ACS Appl. Mater. Interfaces, 5 (2013), pp. 9155-9160. |
| [51] | S.L. Elizondo, J.W. Mintmire, Phy. Rev. B, 73 (2006), Article 045431. |
| [52] | T. Tokuno, M. Nogi, J. Jiu, K. Suganuma, Nanoscale Res. Lett., 7 (2012), p. 281. |
| [53] | S.A. Abdullah, Mater. Res. Bull., 111 (2019), pp. 245-250. |
| [54] | J.Y. Lin, Y.L. Hsueh, J.J. Huang, J.R. Wu, Thin Solid Films, 584 (2015), pp. 243-247. |
| [55] | F. Alotaibi, T.T. Tung, M.J. Nine, C.J. Coghlan, D. Losic, ACS Appl. Nano Mater., 1 (2018), pp. 2249-2260. |
| [56] | L. Ouyang, W. Huang, M. Huang, B. Qiu, Adv. Compos. Hybrid Mater. (2022), 10.1007/s42114-022-00450-1. |
| [57] | X. Jing, Y. Li, J. Zhu, L. Chang, S. Maganti, N. Naik, B.B. Xu, V. Murugadoss, M. Huang, Z. Guo, Adv. Compos. Hybrid Mater. (2022), 10.1007/s42114-022-00438-x. |
| [58] | Y. Zhao, F. Liu, K. Zhu, et al., Adv. Compos. Hybrid Mater. (2022)In press, 10.1007/s42114-022-00430-5. |
| [59] | L. Tan, C. Wei, Y. Zhang, Y. An, S. Xiong, J. Feng, Chem. Eng. J., 431 (2022), Article 134277. |
| [60] | C. Liu, Q. Huang, K. Zheng, J. Qin, D. Zhou, J. Wang, Energies, 13 (2020), p. 5373. |
| [61] | W. Shao, D. Liu, T. Cao, H. Cheng, J. Kuang, Y. Deng, W. Xie, Adv. Compos. Hybrid Mater., 4 (2021), pp. 521-533. |
| [62] | Q.S. Gao, Y.M. Pan, G.Q. Zheng, C.T. Liu, C.Y. Shen, X.H. Liu, Adv. Compos. Hybrid Mater., 4 (2021), pp. 274-285. |
| [63] | H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu, Z. Guo, C. Liu, C. Shen, Eng. Sci., 16 (2021), pp. 331-340. |
| [64] | Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen, Y. Wang, Adv. Compos. Hybrid Mater., 5 (2022), pp. 209-219, 10.1007/s42114-021-00320-2. |
| [65] | Y. Guo, D. Wang, T. Bai, H. Liu, Y. Zheng, C. Liu, C. Shen, Adv. Compos. Hybrid Mater., 4 (2021), pp. 602-613. |
| [66] | G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik, Y. Ding, Z. Guo, Nano Micro Lett., 13 (2021), p. 153. |
| [67] | J. Guo, X. Li, Z. Chen, J. Zhu, X. Mai, R. Wei, K. Sun, H. Liu, Y. Chen, N. Naik, Z. Guo, J. Mater. Sci. Technol., 108 (2022), pp. 64-72. |
| [68] | Y. Li, Y. Qing, W. Li, M. Zong, F. Luo, Adv. Compos. Hybrid Mater., 4 (2021), pp. 1027-1038. |
| [69] | Z. Yu, Z. Yan, F. Zhang, et al., Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance Progress in Organic Coatings, 168 (2022), Article 106875. |
| [70] | G. Li, J. Li, Z. Li, et al., Adv. Compos. Hybrid Mater. (2022) In press, 10.1007/s42114-021-00331-z. |
| [71] | A. Umar, R. Kumar, H. Algadi, et al., Adv. Compos. Hybrid Mater., 4 (2021), pp. 1015-1026. |
| [72] | Y. Wang, Y. Yang, L. Wang, et al., Mater. Today Phys., 21 (2021), Article 100545. |
| [1] | Xu-Ping Wu, Xue-Mei Luo, Hong-Lei Chen, Ji-Peng Zou, Guang-Ping Zhang. A unified model for determining fracture strain of metal films on flexible substrates [J]. J. Mater. Sci. Technol., 2020, 54(0): 87-94. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
