J. Mater. Sci. Technol. ›› 2022, Vol. 123: 34-40.DOI: 10.1016/j.jmst.2022.01.018
• Research Article • Previous Articles Next Articles
Han Lia,b, Hui Lia,b, Ziqiang Wua,b, Lili Zhua,b, Changdian Lia,b, Shuai Lina, Xuebin Zhua,*(), Yuping Suna,c,d
Received:
2021-11-15
Revised:
2022-01-13
Accepted:
2022-01-23
Published:
2022-10-01
Online:
2022-09-30
Contact:
Xuebin Zhu
About author:
*E-mail address: xbzhu@issp.ac.cn (X. Zhu).Han Li, Hui Li, Ziqiang Wu, Lili Zhu, Changdian Li, Shuai Lin, Xuebin Zhu, Yuping Sun. Realization of high-purity 1T-MoS2 by hydrothermal synthesis through synergistic effect of nitric acid and ethanol for supercapacitors[J]. J. Mater. Sci. Technol., 2022, 123: 34-40.
Fig. 1. Phase and crystal structure of samples. (a) XRD patterns of all the samples. (b) Raman spectra of all the samples. (c) XPS spectra of 2H-MoS2, MoS2(HNO3) and MoS2(Synergism). (d) Phase percentage of MoS2 from deconvolution of XPS spectra.
Fig. 2. Microstructures of all samples. (a, b) HAADF-STEM images of MoS2(Synergism). (c) Static contact angle images of 2H-MoS2, MoS2(HNO3) and MoS2(Synergism), respectively.
Fig. 3. Electrochemical performance of 2H-MoS2, MoS2(HNO3) and MoS2(Synergism) in Na2SO4. (a) Cyclic voltammetry (CV) curves at a scan rate of 20 mV s-1. (b) Galvanostatic charge-discharge (GCD) curves at 1 A g-1. (c) Capacitances measured at a series of current densities. (d) Electrochemical impedance spectroscopy (EIS). (e) b-value for the MoS2(Synergism) electrode. (f) CV partition analysis showing the capacitive contribution to the total current at select scan rates. (g) Normalized contribution ratio of capacitive capacitance at different scan rates. (h) Capacitance retention after 10,000 cycles for MoS2(Synergism) electrode at 20 A g-1.
Fig. 4. Electrochemical properties of flexible ASCs devices. (a) CV curves of MoS2(Synergism)/CC and MnO2/CC at the same scan rate of 20 mV s-1. (b) CV curves of ASCs devices. (c) GCD curves of ASCs devices. (d) Cycling performance of the ASCs devices at 30 mA cm-2 within the potential window between 0 and 1.8 V. (e) Ragone plots of power and energy densities of ASCs devices compared to previously report advanced flexible devices.
Fig. 5. Flexibility and application of the ASCs devices. (a) Digital photographs and (b) capacitance retention of flexible MoS2(Synergism) based ASCs bent at different angles of 0°, 30°, 60° and 90° at 20 mV s-1. (c) CV and (d) GCD curves of a single hybrid device and the two ASCs devices connected in series, respectively. (e) Photo of two ASCs devices connected in series driving the electronic watch.
[1] |
J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 8 (2017) 14969.
DOI URL |
[2] |
J. Xu, J. Zhang, W. Zhang, C. Lee, Adv. Energy Mater. 7 (2017) 1700571.
DOI URL |
[3] |
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R.K. Verma, D.P. Singh, W.K. Tan, A.P. del Pino, S.A. Moshkalev, A. Matsuda, Nano Res. 12 (2019) 2655-2694.
DOI URL |
[4] |
S. Yuan, S. Pang, J. Hao, Appl. Phys. Rev. 7 (2020) 021304.
DOI URL |
[5] |
X. Wu, H. Zhang, J. Zhang, X.W. Lou, Adv. Mater. 33 (2021) 2008376.
DOI URL |
[6] |
D. Xia, F. Gong, X. Pei, W. Wang, H. Li, W. Zeng, M. Wu, D.V. Papavassiliou, Chem. Eng. J. 348 (2018) 908-928.
DOI URL |
[7] |
Q. Ke, X. Zhang, W. Zang, A.M. Elshahawy, Y. Hu, Q. He, S.J. Pennycook, Y. Cai, J. Wang, Small 15 (2019) 1900131.
DOI URL |
[8] |
G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Angew. Chem. 127 (2015) 4734-4739.
DOI URL |
[9] |
M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H. Zhang, A.Z. Moshfegh, Nanoscale Horiz. 3 (2018) 90-204.
DOI URL |
[10] |
Y. Chen, Z. Lai, X. Zhang, Z. Fan, Q. He, C. Tan, H. Zhang, Nat. Rev. Chem. 4 (2020) 243-256.
DOI URL |
[11] |
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R. D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Ter-rones, W. Windl, J.E. Goldberger, ACS Nano 7 (2013) 2898-2926.
DOI URL |
[12] |
A. Kuc, T. Heine, Chem. Soc. Rev. 44 (2015) 2603-2614.
DOI URL |
[13] |
G. Zhang, H. Liu, J. Qu, J. Li, Energy Environ. Sci. 9 (2016) 1190-1209.
DOI URL |
[14] |
C. Tan, Z. Lai, H. Zhang, Adv. Mater. 29 (2017) 1701392.
DOI URL |
[15] |
J.H. Han, K. Minkyoung, K. Youngsoo, C. Jinwoo, Chem. Rev. 118 (2018) 6151-6188.
DOI URL |
[16] |
M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10 (2015) 313-318.
DOI URL |
[17] |
Z. Lei, J. Zhan, L. Tang, Y. Zhang, Y. Wang, Adv. Energy Mater. 8 (2018) 1703482.
DOI URL |
[18] |
Y. Shao, J. Fu, Z. Cao, K. Song, R. Sun, Y. Wan, A. Shamim, L. Cavallo, Y. Han, R.B. Kaner, V.C. Tung, ACS Nano 14 (2020) 7308-7318.
DOI URL |
[19] |
S. Lee, J. Hwang, D. Kim, H. Ahn, Chem. Eng. J. 419 (2021) 129701.
DOI URL |
[20] | K. Duerloo, Y. Li, E.J. Reed, Nat. Commun. 5 (2014) 1-9. |
[21] | S. Jayabal, J. Wu, J. Chen, D. Geng, X. Meng, Mater. Today Energy 10 (2018) 264-279. |
[22] |
Y. Yu, G. Nam, Q. He, X. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, F. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu, Y. Du, W. Huang, H. Zhang, Nat. Chem. 10 (2018) 638-64.
DOI URL |
[23] |
J. Strachan, A.F. Masters, T. Maschmeyer, J. Mater. Chem. A 9 (2021) 9451-9461.
DOI URL |
[24] |
Q. Liu, X. Li, Z. Xiao, Y. Zhou, H. Chen, A. Khalil, T. Xiang, J. Xu, W. Chu, X. Wu, J. Yang, C. Wang, Y. Xiong, C. Jin, P.M. Ajayan, L. Song, Adv. Mater. 27 (2015) 4 837-4 844.
DOI URL |
[25] |
Q. Liu, X. Li, Q. He, A. Khalil, D. Liu, T. Xiang, X. Wu, L. Song, Small 11 (2015) 5556-5564.
DOI URL |
[26] |
J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, Y. Xie, J. Am. Chem. Soc. 135 (2013) 17881-17888.
DOI URL |
[27] | X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T. Chen, Nat. Commun. 7 (2016) 1-7. |
[28] |
X. Geng, Y. Zhang, Y. Han, J. Li, L. Yang, M. Benamara, L. Chen, H. Zhu, Nano Lett. 17 (2017) 1825-1832.
DOI URL |
[29] |
S. Yang, K. Zhang, C. Wang, Y. Zhang, S. Chen, C. Wu, A. Vasileff, S. Qiao, L. Song, J. Mater. Chem. A 5 (2017) 23704-23711.
DOI URL |
[30] |
W. Ding, L. Hu, J. Dai, X. Tang, R. Wei, Z. Sheng, C. Liang, D. Shao, W. Song, Q. Liu, M. Chen, X. Zhu, S. Chou, X. Zhu, Q. Chen, Y. Sun, S.X. Dou, ACS Nano 13 (2019) 1694-1702.
DOI PMID |
[31] |
X. Wang, W. Ding, H. Li, H. Li, S. Zhu, X. Zhu, J. Dai, Z. Sheng, H. Wang, X. Zhu, Y. Sun, S.X. Dou, J. Mater. Chem. A 7 (2019) 19152-19160.
DOI |
[32] |
M. Liu, J. Wang, W. Klysubun, G. Wang, S. Sattayaporn, F. Li, Y. Cai, F. Zhang, J. Yu, Y. Yang, Nat. Commun. 12 (2021) 1-13.
DOI URL |
[33] |
Q. Mahmood, S.K. Park, K.D. Kwon, S. Chang, J. Hong, G. Shen, Y. M. Jung, T.J. Park, S.W. Khang, W.S. Kim, Adv. Energy Mater. 6 (2016) 1501115.
DOI URL |
[34] |
Y. Qi, Q. Xu, Y. Wang, B. Yan, Z. Chen, ACS Nano 10 (2016) 2903-2909.
DOI URL |
[35] |
S. Venkateshwaran, S.M. Senthil Kumar, ACS Sustain. Chem. Eng. 7 (2018) 2008-2017.
DOI URL |
[36] |
J. Zhang, J. Zheng, W. Yang, Chem. Eng. J. 403 (2021) 126368.
DOI URL |
[37] |
R. Barik, A.K. Yadav, S.N. Jha, D. Bhattacharyya, P.P. Ingole, ACS Appl. Mater. Interfaces 13 (2021) 8102-8119.
DOI URL |
[38] |
A. Ejigu, I.A. Kinloch, E. Prestat, R. A.W. Dryfe, J. Mater. Chem. A 5 (2017) 11316-11330.
DOI URL |
[39] |
N. Joseph, A.C. Bose, Electrochim. Acta 301 (2019) 401-410.
DOI URL |
[40] |
N. Feng, R. Meng, L. Zu, Y. Feng, C. Peng, J. Huang, G. Liu, B. Chen, J. Yang, Nat. Commun. 10 (2019) 1-11.
DOI URL |
[41] |
H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Adv. Mater. 27 (2015) 1117-1123.
DOI URL |
[42] | K. Thiyagarajan, W. Song, H. Park, V. Selvaraj, S. Moon, J. Oh, M. Kwak, G. Park, M. Kong, M. Pal, J. Kwak, A. Giri, J. Jang, S. Park, U. Jeong, ACS Appl. Mater. Interfaces 13 (2021) 26 870-26 878. |
[43] |
J.Wang Liu, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Adv. Sci. 5 (2018) 1700322.
DOI URL |
[44] |
A. Zhang, R. Gao, L. Hu, X. Zang, R. Yang, S. Wang, S. Yao, Z. Yang, H. Hao, Y. Yan, Chem. Eng. J. 417 (2021) 129186.
DOI URL |
[45] |
N. Zarshad, A.U. Rahman, J. Wu, A. Ali, F. Raziq, L. Han, P. Wang, G. Li, H. Ni, Chem. Eng. J. 415 (2021) 128967.
DOI URL |
[46] |
C. Zequine, C.K. Ranaweera, Z. Wang, S. Singh, P. Tripathi, O.N. Srivastava, B.K. Gupta, K. Ramasamy, P.K. Kahol, P.R. Dvornic, R.K. Gupta, Sci. Rep. 6 (2016) 31704.
DOI PMID |
[47] |
Z. Wang, Y. Chen, M. Yao, J. Dong, Q. Zhang, L. Zhang, X. Zhao, J. Power Sources 448 (2020) 227398.
DOI URL |
[48] |
C. Cai, W. Zhou, Y. Fu, Chem. Eng. J. 418 (2021) 129275.
DOI URL |
[49] |
S. Chen, H. Jiang, Q. Cheng, G. Wang, S. Petr, C. Li, Chem. Eng. J. 403 (2021) 126380.
DOI URL |
[50] | X. Luo, Y. Liang, W. Weng, Z. Hu, Y. Zhang, J. Yang, L. Yang, M. Zhu, Energy Storage Mater. 33 (2020) 11-17. |
[51] |
Z. Li, M. Li, Q. Fan, X. Qi, L. Qu, M. Tian, ACS Appl. Mater. Interfaces 13 (2021) 14778-14785.
DOI URL |
[52] |
H. Chen, S. Chen, Y. Zhang, H. Ren, X. Hu, Y. Bai, ACS Appl. Mater. Interfaces 12 (2020) 56319-56329.
DOI URL |
[53] |
G. Nie, X. Zhao, J. Jiang, Y. Luan, J. Shi, J. Liu, Z. Kou, J. Wang, Y. Long, Chem. Eng. J. 402 (2020) 126294.
DOI URL |
[54] |
Z. Yang, Y. Jia, Y. Niu, Z. Yong, K. Wu, C. Zhang, M. Zhu, Y. Zhang, Q. Li, Chem. Eng. J. 400 (2020) 125835.
DOI URL |
[55] |
Y. Shi, Y. Wang, Y. Gu, L. Zheng, S. Ma, X. Xu, Chem. Eng. J. 392 (2020) 123645.
DOI URL |
[56] |
B.S. Soram, J. Dai, T. Kshetri, N.H. Kim, J.H. Lee, Chem. Eng. J. 391 (2020) 123540.
DOI URL |
[57] |
W. Teng, Q. Zhou, X. Wang, H. Che, P. Hu, H. Li, J. Wang, Chem. Eng. J. 390 (2020) 124569.
DOI URL |
[58] |
Y. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu, K. Ye, G. Wang, D. Cao, J. Yan, Q. Zhang, Adv. Energy Mater. 11 (2021) 2101712.
DOI URL |
[59] | A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D. Akinwande, J. Lin, Nat. Commun. 5 (2014) 1-9. |
[1] | Ting He, Jiajia Ru, Yutong Feng, Dapeng Bi, Jiansheng Zhang, Feng Gu, Chi Zhang, Jinhu Yang. Templated spherical coassembly strategy to fabricate MoS2/C hollow spheres with physical/chemical polysulfides trapping for lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 98(0): 136-142. |
[2] | Shi Zhongting, Sun Gan, Yuan Ruiwen, Chen Wenxiao, Wang Zhuo, Zhang Lu, Zhan Ke, Zhu Min, Yang Junhe, Zhao Bin. Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime [J]. J. Mater. Sci. Technol., 2022, 99(0): 260-269. |
[3] | Jingqi Chen, Xianlei Hu, Haitao Gao, Shu Yan, Shoudong Chen, Xianghua Liu. Graphene-wrapped MnCO3/Mn3O4 nanocomposite as an advanced anode material for lithium-ion batteries: Synergistic effect and electrochemical performances [J]. J. Mater. Sci. Technol., 2022, 99(0): 9-17. |
[4] | Jingyi Ma, Xinyu Chen, Yaochen Sheng, Ling Tong, Xiaojiao Guo, Minxing Zhang, Chen Luo, Lingyi Zong, Yin Xia, Chuming Sheng, Yin Wang, Saifei Gou, Xinyu Wang, Xing Wu, Peng Zhou, David Wei Zhang, Chenjian Wu, Wenzhong Bao. Top gate engineering of field-effect transistors based on wafer-scale two-dimensional semiconductors [J]. J. Mater. Sci. Technol., 2022, 106(0): 243-248. |
[5] | Fengyi He, Cheng Tang, Yadong Liu, Haitao Li, Aijun Du, Haijiao Zhang. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene quaternary composite with the superior rate performance for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 101-109. |
[6] | Yun Tian, Zhengyu Wei, Fan Li, Songjie Li, Lixiang Shao, Mengyuan He, Panfei Sun, Yuanyuan Li. Enhanced multiple anchoring and catalytic conversion of polysulfides by SnO2-decorated MoS2 hollow microspheres for high-performance lithium-sulfur batteries [J]. J. Mater. Sci. Technol., 2022, 100(0): 216-223. |
[7] | Taegun Kim, Chanwoo Park, Edmund P. Samuel, Yong-Il Kim, Seongpil An, Sam S. Yoon. Wearable sensors and supercapacitors using electroplated-Ni/ZnO antibacterial fabric [J]. J. Mater. Sci. Technol., 2022, 100(0): 254-264. |
[8] | Mohan Reddy Pallavolu, Arghya Narayan Banerjee, Ramesh Reddy Nallapureddy, Sang W. Joo. Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor [J]. J. Mater. Sci. Technol., 2022, 96(0): 332-344. |
[9] | J.M. Yu, T. Hashimoto, H.T. Li, N. Wanderka, Z. Zhang, C. Cai, X.L. Zhong, J. Qin, Q.P. Dong, H. Nagaumi, X.N. Wang. Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography [J]. J. Mater. Sci. Technol., 2022, 120(0): 118-128. |
[10] | Dhananjay Mishra, Niraj Kumar, Ajit Kumar, Seung Gi Seo, Sung Hun Jin. Mitigation on self-discharge behaviors via morphological control of hierarchical Ni-sulfides/Ni-oxides electrodes for long-life-supercapacitors [J]. J. Mater. Sci. Technol., 2022, 113(0): 217-228. |
[11] | Meng Cai, Peng Feng, Han Yan, Yuting Li, Shijie Song, Wen Li, Hao Li, Xiaoqiang Fan, Minhao Zhu. Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection [J]. J. Mater. Sci. Technol., 2022, 116(0): 151-160. |
[12] | Chuanyin Xiong, Mengrui Li, Qing Han, Wei Zhao, Lei Dai, Yonghao Ni. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances [J]. J. Mater. Sci. Technol., 2022, 97(0): 190-200. |
[13] | Shuang Liu, Enhui Wang, Shichun Liu, Chunyu Guo, Hailong Wang, Tao Yang, Xinmei Hou. Mild fabrication of SiC/C nanosheets with prolonged cycling stability as supercapacitor [J]. J. Mater. Sci. Technol., 2022, 110(0): 178-186. |
[14] | Hae Jin Park, Hee Jin Lee, Tae Kyung Kim, Sung Hwan Hong, Wei-Min Wang, Taek Jib Choi, Ki Buem Kim. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution [J]. J. Mater. Sci. Technol., 2022, 109(0): 245-253. |
[15] | Yadong Liu, Cheng Tang, Weiwei Sun, Guanjia Zhu, Aijun Du, Haijiao Zhang. In-situ conversion growth of carbon-coated MoS2/N-doped carbon nanotubes as anodes with superior capacity retention for sodium-ion batteries [J]. J. Mater. Sci. Technol., 2022, 102(0): 8-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||