J. Mater. Sci. Technol. ›› 2022, Vol. 119: 111-122.DOI: 10.1016/j.jmst.2021.11.069
• Research Article • Previous Articles Next Articles
Huan Liua,b, Siying Denga,*(
), Shuaifeng Chena, Hongwu Songa,*(
), Shihong Zhanga, Ben Wangc
Received:2021-08-17
Revised:2021-11-24
Accepted:2021-11-25
Published:2022-03-03
Online:2022-03-03
Contact:
Siying Deng,Hongwu Song
About author:hwsong@imr.ac.cn (H. Song).Huan Liu, Siying Deng, Shuaifeng Chen, Hongwu Song, Shihong Zhang, Ben Wang. Correlation of the anisotropic hardening behavior and texture features of cold rolled Zr-4 sheet under uniaxial tension[J]. J. Mater. Sci. Technol., 2022, 119: 111-122.
Fig. 1. EBSD image showing the initial texture of Zr-4 sheet: (a) inverse pole figure (IPF) map; (b) (0001) pole figure (PF) from EBSD measurements, where Fr, Ft, and Fn indicate Kearns factors of RD, TD, and ND; (c) (0001) PF measured by XRD.
Fig. 2. Mechanical properties of the Zr-4 sheet in different loading directions: (a) stress-strain curves, (b) yield stress, (c) ultimate tensile stress.
| Direction | n | R |
|---|---|---|
| RD | 0.107 | 4.74 |
| DD | 0.085 | 6.51 |
| TD | 0.072 | 6.27 |
Table 1. The n and R values of the Zr-4 sheet in different tensile directions.
| Direction | n | R |
|---|---|---|
| RD | 0.107 | 4.74 |
| DD | 0.085 | 6.51 |
| TD | 0.072 | 6.27 |
Fig. 3. Deformed microstructure and extension twin distribution of the Zr-4 sheet under uniaxial tensile loading at a strain of 0.15: (a, d) RD, (b, e) DD, (c, f) TD.
| Modes | Total number of slip variants | Taylor axis | Total number of variants of the Taylor axis |
|---|---|---|---|
| {01\bar{1}0}< | 3 | <0001> | 1 |
| {0001}< | 3 | < | 3 |
| {01\bar{1}1}< | 12 | < | 12 |
Table 2. Slip systems available in zirconium alloys and their Taylor axes.
| Modes | Total number of slip variants | Taylor axis | Total number of variants of the Taylor axis |
|---|---|---|---|
| {01\bar{1}0}< | 3 | <0001> | 1 |
| {0001}< | 3 | < | 3 |
| {01\bar{1}1}< | 12 | < | 12 |
| Mode | τ0 (MPa) | τ1 (MPa) | θ0 | θ1 | hs/pr | hs/bas | hs/pyca | hs/etw |
|---|---|---|---|---|---|---|---|---|
| Prismatic <a> | 164 | 58 | 400 | 26 | 2 | 1 | 1 | 2 |
| Basal <a> | 342 | 5 | 10 | 2 | 1 | 1 | 1 | 1 |
| Pyramidal <c+a> | 366 | 400 | 1200 | 1 | 1 | 1 | 2 | 2 |
| ETW | 450 | 5 | 200 | 30 | 1 | 1 | 1 | 2 |
Table 3. The better fitted CRSSs and hardening parameters for VPSC model of the Zr-4 sheet.
| Mode | τ0 (MPa) | τ1 (MPa) | θ0 | θ1 | hs/pr | hs/bas | hs/pyca | hs/etw |
|---|---|---|---|---|---|---|---|---|
| Prismatic <a> | 164 | 58 | 400 | 26 | 2 | 1 | 1 | 2 |
| Basal <a> | 342 | 5 | 10 | 2 | 1 | 1 | 1 | 1 |
| Pyramidal <c+a> | 366 | 400 | 1200 | 1 | 1 | 1 | 2 | 2 |
| ETW | 450 | 5 | 200 | 30 | 1 | 1 | 1 | 2 |
Fig. 5. Comparison between experimental and simulated (VPSC model) stress-strain curves and mechanical behavior of the Zr-4 sheet: (a) true stress-strain curves, (b) strain hardening rate, (c) hardening exponent (n), and (d) Lankford value (R).
Fig. 6. Comparison between experimental and simulated PFs under uniaxial tensile loading of the Zr-4 sheet at a strain of 0.15: (a, b) RD, (c, d) DD, (e, f) TD.
| Experiment | Simulation | |||||||
|---|---|---|---|---|---|---|---|---|
| Fr | Ft | Fn | Twinning fraction (%) | Fr | Ft | Fn | Twinning fraction (%) | |
| RD | 0.061 | 0.209 | 0.730 | 0.013 | 0.067 | 0.219 | 0.712 | 0.010 |
| DD | 0.063 | 0.202 | 0.735 | 0.024 | 0.074 | 0.208 | 0.718 | 0.044 |
| TD | 0.098 | 0.166 | 0.736 | 2.311 | 0.098 | 0.176 | 0.726 | 2.958 |
Table 4. Comparison of the Kearns factors and twin fractions between experiments and VPSC simulations of the Zr-4 sheet.
| Experiment | Simulation | |||||||
|---|---|---|---|---|---|---|---|---|
| Fr | Ft | Fn | Twinning fraction (%) | Fr | Ft | Fn | Twinning fraction (%) | |
| RD | 0.061 | 0.209 | 0.730 | 0.013 | 0.067 | 0.219 | 0.712 | 0.010 |
| DD | 0.063 | 0.202 | 0.735 | 0.024 | 0.074 | 0.208 | 0.718 | 0.044 |
| TD | 0.098 | 0.166 | 0.736 | 2.311 | 0.098 | 0.176 | 0.726 | 2.958 |
Fig. 11. (a) Influence of the latent hardening coefficients on: stress-strain curve; (b) influence of twining on the strain hardening rate; (c) influence of latent hardening coefficients on the strain hardening rate.
| [1] |
L Murty, K.I. Charit, Prog. Nucl. Energy 48 (2006) 325-359.
DOI URL |
| [2] |
K.V.M. Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G.H. Das, N. Saibaba, S. Banarjee, J. Nucl. Mater. 383 (2008) 78-85.
DOI URL |
| [3] | E Tenckhoff, J. ASTM Int. 2 (2005) 26. |
| [4] | A.V. Nikulina, V.A. Markelov, M.M. Peregud, Y.K. Bibilashvili, A.E. Novoselov, J. ASTM Int. (1996) 785-804. |
| [5] |
M. Kumar, C. Vanitha, I. Samajdar, G.K. Dey, R. Tewari, D. Srivastava, S. Baner- jee, Mater. Sci. Technol. 22 (2006) 331-342.
DOI URL |
| [6] |
H. Takuda, N. Hatta, Mater. Sci. Eng. A 242 (1998) 15-21.
DOI URL |
| [7] |
H. Takuda, S. Kikuchi, N. Hatta, J. Mater. Process. Technol. 84 (1998) 117-121.
DOI URL |
| [8] |
S.K. Singh, K. Limbadri, A.K. Singh, A.M. Ram, S.K. Panda, J. Mater. Res. Technol. 8 (2019) 2120-2129.
DOI URL |
| [9] |
E. Tenckhoff, Metall. Trans. A 9 (1978) 1401-1412.
DOI URL |
| [10] |
M Griffiths, J. Nucl. Mater. 159 (1988) 190-218.
DOI URL |
| [11] |
J.H. Peng, W.F. Li, J.L. Bechade, R. Maury, Rare Met 32 (2008) 1-6.
DOI URL |
| [12] | X.Y. Liu, C. Yang, L. Luo, X.R. Yang, Q.Q. Zhang, M. Qiang, Rare Met 43 (2019) 500-506. |
| [13] |
A. Akhtar, Metall. Trans. A 6 (1975) 1217-1222.
DOI URL |
| [14] |
A. Akhtar, Acta Metall 21 (1973) 1-11.
DOI URL |
| [15] |
R.J. Mccabe, G. Proust, E.K. Cerreta, A. Misra, Int. J. Plast. 25 (2009) 454-472.
DOI URL |
| [16] |
G.C. Kaschner, C.N. Tomé, R.J. McCabe, A. Misra, S.C. Vogel, D.W. Brown, Mater. Sci. Eng. A 463 (2007) 122-127.
DOI URL |
| [17] |
G.B. Reddy, A. Sarkar, R. Kapoor, A.K. Kanjarla, Mater. Sci. Eng. A 734 (2018) 210-223.
DOI URL |
| [18] |
C.Z. Liu, G.P. Li, L.H. Chu, H.F. Gu, F.S. Yuan, F.Z. Han, Y.D. Zhang, Mater. Sci. Eng. A 719 (2018) 147-154.
DOI URL |
| [19] |
D.H. Ahn, S. Lim, G.G. Lee, Y.B. Chun, J. Nucl. Mater. 523 (2019) 458-471.
DOI URL |
| [20] |
S.Y. Deng, H.W. Song, H. Liu, S.H. Zhang, Int. J. Solids Struct. 213 (2020) 63-76.
DOI URL |
| [21] | B.R. Adamson, Zirconium Production and Technology: The Kroll Medal Papers, 1975-2010. |
| [22] |
B.F. Luan, S.S. Gao, L.J. Chai, X.Y. Li, A. Chapuis, Q. Liu, Mater. Des. 52 (2013) 1065-1070.
DOI URL |
| [23] | G.G. Yapici, C.N. Tomé, I.J. Beyerlein, I. Karaman, S.C. Vogel, C. Liu, Acta Mater 57 (2009) 4 855-4 865. |
| [24] |
R. Montgomery, C. Tomé, W.F. Liu, A. Alankar, G. Subramanian, C. Stanek, J. Comput. Phys. 328 (2017) 278-300.
DOI URL |
| [25] |
H.J. Li, W.P. Cai, Z.J. Fan, X.F. Huang, Y.D. Wang, J. Gong, B. Chen, G.G. Sun, H. Wang, J. Li, S.M. Peng, J. Appl. Crystallogr 49 (2016) 987-996.
DOI URL |
| [26] |
H. Gao, K.D. Liu, Y. Cui, G. Chen, Y.T. Wu, X. Liu, Q. Lin, Mater. Lett. 307 (2022) 131025.
DOI URL |
| [27] |
F.Z. Han, G.P. Li, C.Z. Liu, F.S. Yuan, Y.D. Zhang, M. Ali, W.B. Guo, H.F. Gu, Mater. Chem. Phys. 242 (2019) 122539.
DOI URL |
| [28] |
W.J. He, C. Adrien, X. Chen, Q. Liu, Mater. Sci. Eng. A 734 (2018) 364-373.
DOI URL |
| [29] |
W.B. Guo, G.P. Li, F.S. Yuan, F.Z. Han, Y.D. Zhang, M. Ali, J. Ren, G.H. Yuan, Mater. Sci. Eng. A 807 (2021) 140846.
DOI URL |
| [30] |
S.Y. Deng, H.W. Song, C. Zheng, T.Z. Zhao, S.H. Zhang, K.B. Nielsen, Mater. Sci. Eng. A 764 (2019) 138280.
DOI URL |
| [31] |
Y.D. Zhang, G.P. Li, C.Z. Liu, F.S. Yuan, F.Z. Han, M. Ali, W.B. Guo, H.F. Gu, Mater. Sci. Eng. A 761 (2019) 137992.
DOI URL |
| [32] |
J.J. Kearns, J. Nucl. Mater. 299 (2001) 171-174.
DOI URL |
| [33] |
B.M. Morrow, R.J. McCabe, E.K. Cerreta, C.N. Tomé, Mater. Sci. Eng. A 574 (2013) 157-162.
DOI URL |
| [34] |
R. Hielscher, H. Schaeben, J. Appl. Crystallogr. 41 (2008) 1024-1037.
DOI URL |
| [35] |
C.N. Tomé, R.A. Lebensohn, U.F. Kocks, Acta Metall. Mater. 39 (1991) 2667-2680.
DOI URL |
| [36] |
R.A. Lebensohn, C.N. Tomé, Acta Metall. Mater. 41 (1993) 2611-2624.
DOI URL |
| [37] |
R.A. Lebensohn, C.N. Tomé, Mater. Sci. Eng. A 175 (1994) 71-82.
DOI URL |
| [38] | C.N. Tomé, R. Lebensohn, Visco-Plastic Self-Consistent (VPSC), sixth ed., Los Alamos National Laboratory and Universidad Nacional de Rosario, 2003. |
| [39] |
C.N. Tomé, N. Carlos, Modell. Simul. Mater. Sci. Eng. 7 (1999) 723.
DOI URL |
| [40] |
H.M. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, C.N. Tomé, Int. J. Solids Struct. 47 (2010) 2905-2917.
DOI URL |
| [41] |
G.A. Mcrae, C.E. Coleman, J. Nucl. Mater. 499 (2018) 622-640.
DOI URL |
| [42] |
K. Veevers, K.U. Snowden, J. Nucl. Mater. 47 (1973) 311-316.
DOI URL |
| [43] |
W.R. Thorpe, I.O. Smith, J. Nucl. Mater. 80 (1979) 35-42.
DOI URL |
| [44] |
H.G. Shi, J.X. Li, J.W. Mao, W.J. Lu, Scr. Mater. 169 (2019) 28-32.
DOI URL |
| [45] |
H.G. Shi, J.X. Li, J.W. Mao, W.J. Lu, Scr. Mater. 188 (2020) 280-284.
DOI URL |
| [46] |
S.F. Chen, H.W. Song, S.H. Zhang, M. Cheng, M.G. Lee, J. Alloy. Compd. 805 (2019) 138-152.
DOI |
| [47] |
Y.B. Chun, M. Battaini, C.H.J. Davies, S.K. Hwang, Metall. Mater. Trans. A 41 (2010) 3473-3487.
DOI URL |
| [48] | E.J. Rapperport, C.S. Hartley, Trans. Metall. Soc. Aime 218 (1960) 869-877. |
| [49] |
M. Zhang, B.F. Luan, L.H. Chu, B. Gao, L. Wang, G.H. Yuan, Q. Liu, Scr. Mater. 187 (2020) 379-383.
DOI URL |
| [50] |
M. Tsubasa, Y. Michiaki, H. Koji, K. Yoshihito, Acta Mater 151 (2018) 112-124.
DOI URL |
| [51] |
P. Bastien, P. Pointu, J. Nucl. Mater. 5 (1977) 101-108.
DOI URL |
| [52] |
A. Akhtar, A. Teghtsoonian, Acta Metall 19 (1971) 655-663.
DOI URL |
| [53] |
A. Jain, S.R. Agnew, Mater. Sci. Eng. A 462 (2007) 29-36.
DOI URL |
| [54] |
J.C. Gong, T.B. Britton, M.A. Cuddihy, Acta Mater 96 (2015) 249-257.
DOI URL |
| [55] |
F. Xu, R.A. Holt, M.R. Daymond, J. Nucl. Mater. 373 (2008) 217-225.
DOI URL |
| [56] |
F. Xu, R.A. Holt, M.R. Daymond, J. Nucl. Mater. 394 (2009) 9-19.
DOI URL |
| [57] |
H. Qiao, P.D. Wu, H. Wang, M.A. Gharghouri, M.R. Daymond, Int. J. Solids Struct. 71 (2015) 308-322.
DOI URL |
| [58] |
S.F. Chen, H.W. Song, M. Cheng, C. Zheng, S.H. Zhang, M.G. Lee, J. Mater. Sci. Technol. 67 (2021) 211-225.
DOI URL |
| [59] |
S.F. Chen, H.W. Song, S.H. Zhang, M. Cheng, C. Zheng, M.G. Lee, Scr. Mater. 167 (2019) 51-55.
DOI URL |
| [1] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Jian Sun, Levente Vitos. Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys [J]. J. Mater. Sci. Technol., 2022, 99(0): 161-168. |
| [2] | Zhaoxin Du, Qiwei He, Ruirun Chen, Fei Liu, Jingyong Zhang, Fei Yang, Xueping Zhao, Xiaoming Cui, Jun Cheng. Rolling reduction -dependent deformation mechanisms and tensile properties in a β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 104(0): 183-193. |
| [3] | C. Yang, M.Q. Li, Y.G. Liu. Characterization of face-centered cubic structure and deformation mechanisms in high energy shot peening process of TC17 [J]. J. Mater. Sci. Technol., 2022, 110(0): 136-151. |
| [4] | Mingxu Wu, Shubin Wang, Fei Xiao, Guoliang Zhu, Chao Yang, Da Shu, Baode Sun. Dislocation glide and mechanical twinning in a ductile VNbTi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 210-215. |
| [5] | Yue Dong, Xingang Liu, Junjie Zou, Yujiao Ke, Pengwei Liu, Lan Ma, Hengjun Luo. Effect of cooling rate following β forging on texture evolution and variant selection during β → α transformation in Ti-55511 alloy [J]. J. Mater. Sci. Technol., 2022, 113(0): 1-13. |
| [6] | Duoduo Wang, Qunbo Fan, Xingwang Cheng, Yu Zhou, Ran Shi, Yan Qian, Le Wang, Xinjie Zhu, Haichao Gong, Kai Chen, Jingjiu Yuan, Liu Yang. Texture evolution and slip mode of a Ti-5.5Mo-7.2Al-4.5Zr-2.6Sn-2.1Cr dual-phase alloy during cold rolling based on multiscale crystal plasticity finite element model [J]. J. Mater. Sci. Technol., 2022, 111(0): 76-87. |
| [7] | Zijian Zhou, Rui Zhang, Chuanyong Cui, Yizhou Zhou, Xiaofeng Sun, Jinglong Qu, Yu Gu, Jinhui Du, Yi Tan. Deformation micro-twinning arising at high temperatures in a Ni-Co-based superalloy [J]. J. Mater. Sci. Technol., 2022, 115(0): 10-18. |
| [8] | Yu-qin Zhang, Wei-li Cheng, Hui Yu, Hong-xia Wang, Xiao-feng Niu, Li-fei Wang, Hang Li. Unveiling the twinning and dynamic recrystallization behavior and the resultant texture evolution in the extruded Mg-Bi binary alloys during hot compression [J]. J. Mater. Sci. Technol., 2022, 105(0): 274-285. |
| [9] | Jiangwei Wang, Anik H.M. Faisal, Xiyao Li, Youran Hong, Qi Zhu, Hongbin Bei, Ze Zhang, Scott X Mao, Christopher R. Weinberger. Discrete twinning dynamics and size-dependent dislocation-to twin transition in body-centred cubic tungsten [J]. J. Mater. Sci. Technol., 2022, 106(0): 33-40. |
| [10] | Seungchan Cho, Junghwan Kim, Ilguk Jo, Jae Hyun Park, Jaekwang Lee, Hyun-Uk Hong, Bong Ho Lee, Wook Ryol Hwang, Dong-Woo Suh, Sang-Kwan Lee, Sang-Bok Lee. Quantitative reorientation behaviors of macro-twin interfaces in shape-memory alloy under compression stimulus in situ TEM [J]. J. Mater. Sci. Technol., 2022, 107(0): 243-251. |
| [11] | Yunwei Gui, Yujie Cui, Huakang Bian, Quanan Li, Lingxiao Ouyang, Akihiko Chiba. Role of slip and {10-12} twin on the crystal plasticity in Mg-RE alloy during deformation process at room temperature [J]. J. Mater. Sci. Technol., 2021, 80(0): 279-296. |
| [12] | Zhibiao Yang, Song Lu, Yanzhong Tian, Zijian Gu, Huahai Mao, Jian Sun, Levente Vitos. Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys [J]. J. Mater. Sci. Technol., 2021, 80(0): 66-74. |
| [13] | Huan Zhang, Yangxin Li, Yuxuan Liu, Qingchun Zhu, Xixi Qi, Gaoming Zhu, Jinhui Wang, Peipeng Jin, Xiaoqin Zeng. The effect of basal <a> dislocation on $\left\{ 11\bar{2}1 \right\}$ twin boundary evolution in a Mg-Gd-Y-Zr alloy [J]. J. Mater. Sci. Technol., 2021, 81(0): 212-218. |
| [14] | Shixing Huang, Qinyang Zhao, Yongqing Zhao, Cheng Lin, Cong Wu, Weiju Jia, Chengliang Mao, Vincent Ji. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys [J]. J. Mater. Sci. Technol., 2021, 79(0): 147-164. |
| [15] | Bingqiang Wei, Song Ni, Yong Liu, Min Song. Structural characterization of the {11$\overline 2$2} twin boundary and the corresponding stress accommodation mechanisms in pure titanium [J]. J. Mater. Sci. Technol., 2021, 72(0): 114-121. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
