J. Mater. Sci. Technol. ›› 2022, Vol. 116: 246-257.DOI: 10.1016/j.jmst.2021.09.067
• Research Article • Previous Articles
Hui Shena, Qingquan Zhanga,b, Ying Yanga, Yang Renc, Yanbao Guod, Yafeng Yange,*(), Zhonghan Lia, Zhiwei Xionga, Xiangguang Konga, Zhihui Zhangb,*(
), Fangmin Guoa,d, Lishan Cuia, Shijie Haoa,*(
)
Received:
2021-05-07
Revised:
2021-08-16
Accepted:
2021-09-28
Published:
2022-01-20
Online:
2022-07-26
Contact:
Yafeng Yang,Zhihui Zhang,Shijie Hao
About author:
haoshij@cup.edu.cn (S. Hao).Hui Shen, Qingquan Zhang, Ying Yang, Yang Ren, Yanbao Guo, Yafeng Yang, Zhonghan Li, Zhiwei Xiong, Xiangguang Kong, Zhihui Zhang, Fangmin Guo, Lishan Cui, Shijie Hao. Selective laser melted high Ni content TiNi alloy with superior superelasticity and hardwearing[J]. J. Mater. Sci. Technol., 2022, 116: 246-257.
Fig. 1. (a) Secondary electron micrograph (SEM) of Ti47Ni53 powders, (b) schematic diagram of the stripe rotation scanning strategy with a stripe width of 4 mm and a hatch rotation degree of 67°, (c) SLM-fabricated Ti47Ni53 block samples built on TiNi substrate, and (d) some opt-Ti47Ni53 gear parts fabricated by SLM with optimized parameters.
Fig. 2. (a) Summary results of the process parameter optimization. (b) Summary results of the internal quality varied with energy density E (E = p/(vht)), illustrated by an increased order of the laser scanning speed.
Fig. 3. (a) The phase composition of the opt-Ti47Ni53 alloy at room temperature identified by 1D HE-XRD pattern. (b) Electric resistance curves and DSC curves during the cooling and heating process.
Fig. 4. TEM images of opt-Ti47Ni53 alloy. (a) Bright-field image obtained at low-magnification. (b) High-magnification bright-field image showing the microstructural characteristics in grains. (c) Dark-field image of Ni4Ti3 precipitates obtained by double-beam analysis and a corresponding SAED pattern. (d) STEM-HAADF image of Ni4Ti3 precipitates. Dark-field images of R-phase obtained after (e) heating to a high temperature (350 K) and (f) cooling to a low temperature (120 K), respectively.
Fig. 5. (a) High-resolution TEM image of opt-Ti47Ni53 alloy. (b) Phase identification results according to the diffraction points of the FFT image in (a). The detailed distributions of (c) Ni4Ti3precipitate and (d) R-phase as well as (e) whole distribution of them are shown in the IFFT image and marked by red area. GPA strain maps for εxx the components of (f) Ni4Ti3 & B2, (g) R-phase & B2, and (h) Ni4Ti3 & R-phase.
Fig. 6. Tribological properties of the opt-Ti47Ni53 alloy. (a) The friction coefficient curves of the samples varying with time, including opt-Ti47Ni53, casting Ti47Ni53 treated by water quenching after the solution (C&Q), and commercial 20CrMnTi. (b) Summary results of the max-width and max-depth at three sampling positions after scratch testing. Schematic diagrams of (c) the ball-in-disc wearing test and (d) the scratch test. (e) Three photographs of opt-Ti47Ni53, (f) C&Q Ti47Ni53, and (g) commercial 20CrMnTi after scratch testing.
Fig. 7. Compression properties and the microscopic deformation behavior of opt-Ti47Ni53 alloy during compressive loading and unloading. (a) The compressive stress-strain cyclic curves obtained at 293 K. 1D HE-XRD patterns obtained along (b) the full azimuthal circle and (c) longitudinal direction (Φ = 90°). (d) The X-ray intensity of the B19′ (100) plane along the full azimuthal circle and (e) the lattice strain of Ni4Ti3 precipitate along the loading direction as the function of applied strain. (f) Comparison of the elastic strain of Ni4Ti3 precipitates achieved in this work and other reported hard inclusions embedded in conventional metal matrices which deform by dislocation slip [32].
Fig. 8. Multiple crystal plane diffractions of precipitation phase Ni4Ti3, R-phase, and B19′ phase along the full azimuth circle (0°-360°) at different applied strains. 180° and 360° are paralleled to the transverse direction (TD = 0°), 270° is paralleled to the direction of the longitudinal direction (LD = 90°).
Fig. 9. Diffraction intensity distributions along the azimuth circle to show (a) the texture and (b) the spatial orientation of Ni4Ti3 precipitate and B19′.
Fig. 10. (a) and (b) Schematic distributions of high-density precipitation particles with or without R-phase surrounded. (c) Spatial orientation of four precipitation variants characterized by TEM and HE-XRD, respectively. (d) The diffraction intensity distribution of the B2 along the azimuth circle obtained by in-situ HE-XRD at 373 K. (e) The crystal structure of B2 in space originated from (d). (f) Schematic diagram showing that the main reason for precipitation texture formation is the inherent B2 texture and the selected growth of precipitates formed during SLM processing.
[1] | C.M. Jackson, H.J. Wagner, R.J. Wasilewski, NASA-SP-1972-5110,1972,U.S. Gov- ernment Printing Office, Washington, D.C. |
[2] | M.K. Stanford, W.A. Wozniak, T.R. McCue, NASA/TM-2012-216027, August 2012, Glenn Research Center, Cleveland, Ohio. |
[3] |
K. Khanlari, M. Ramezani, P. Kelly, Trans. Indian Inst. Met. 71 (2018) 781-799.
DOI URL |
[4] | O. Benafan, A. Garg, R.D. Noebe, H.D. Skorpenske, K. An, N. Schell, Inter- metallics 82 (2017) 40-52. |
[5] |
R.R. Adharapurapu, K.S. Vecchio, Exp. Mech. 47 (2007) 365-371.
DOI URL |
[6] |
I.V. Shishkovskii, I.A. Yadroitsev, S.I. Yu, Powder Metall. Met. Ceram. 50 (2011) 275-283.
DOI URL |
[7] | K. Khanlari, M. Ramezani, M. Hayat, K. Piaras, P. Cao, T. Neitzert, MATEC Web Conf. 109 (2017) 4-9. |
[8] | S. Joshi, K. Rawat, C. Karunakaran, V. Rajamohan, A.T. Mathew, K. Koziol, V. Ku- mar Thakur, A.S.S Balan, Appl. Mater. Today 18 (2019) 100490. |
[9] | J.Y. Lee, J. An, C.K. Chua, Appl. Mater. Today 7 (2017) 120-133. |
[10] |
M. Elahinia, N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, B.A. Bimber, R.F. Hamilton, Prog. Mater. Sci. 83 (2016) 630-663.
DOI URL |
[11] |
Y. Li, X. Cheng, Y. Guan, J. Mater. Sci. Technol. 83 (2021) 1-6.
DOI URL |
[12] |
N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn, J. Mater. Sci. Technol. 35 (2019) 242-269.
DOI URL |
[13] | Q.Q. Zhang, S.J. Hao, Y.T. Liu, Z.W. Xiong, W.Q. Guo, Y. Yang, Y. Ren, L.S. Cui, L.Q. Ren, Z.H. Zhang, Appl. Mater. Today 19 (2020) 100547. |
[14] |
P. Bayati, K. Safaei, M. Nematollahi, A. Jahadakbar, A. Yadollahi, M. Mahtabi, M. Elahinia, Int. J. Adv. Manuf. Technol. 112 (2021) 347-360.
DOI URL |
[15] |
I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, J. Alloy. Compd. 583 (2014) 404-409.
DOI URL |
[16] | H.L. Wei, J. Mazumder, T. DebRoy, Sci. Rep. 5 (2015) 1-7. |
[17] |
P.R. Halani, I. Kaya, Y.C. Shin, H.E. Karaca, Mater. Sci. Eng. A 559 (2013) 836-843.
DOI URL |
[18] |
K. Otsuka, X. Ren, Prog. Mater. Sci. 50 (2005) 511-678.
DOI URL |
[19] | C.A. Biffi, J. Fiocchi, F. Valenza, P. Bassani, A. Tuissi, Shape Mem. Superelasticity 6 (2020) 342-353. |
[20] | X. Wang, J. Yu, J. Liu, L. Chen, Q. Yang, H. Wei, J. Sun, Z. Wang, Z. Zhang, G. Zhao, J. Van Humbeeck, Addit. Manuf. 36 (2020) 101545. |
[21] |
W. Guo, Z. Sun, Y. Yang, X. Wang, Z. Xiong, Z. Li, C. Wang, L. Cui, S. Huang, M. Li, S. Hao, Intermetallics 126 (2020) 106947.
DOI URL |
[22] |
Z.W. Xiong, Z.H. Li, Z. Sun, S.J. Hao, Y. Yang, M. Li, C.H. Song, P. Qiu, L.S. Cui, J. Mater. Sci. Technol. 35 (2019) 2238-2242.
DOI URL |
[23] | S.F. Li, Y.F. Yang, R.D.K. Misra, Y. Liu, D. Ye, C.Q. Hu, M.Q. Xiang, Carbon 164 (2020) 378-390. |
[24] |
C. Tan, S.F. Li, Y.F. Yang, Q.S. Zhu, C.Q. Hu, Y. Shi, P.P. Lv, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 49 (2018) 3394-3401.
DOI URL |
[25] | S. Miyazaki, Shape Mem. Superelasticity 3 (2017) 279-314. |
[26] | Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka, X. Ren, Phys. Rev. B Condens. Matter Mater. Phys. 81 (2010) 1-9. |
[27] |
J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Acta Mater. 58 (2010) 3444-3458.
DOI URL |
[28] |
Z.Q. Yang, W. Tirry, D. Schryvers, Scr. Mater. 52 (2005) 1129-1134.
DOI URL |
[29] |
C.B. Ke, S. Cao, X.P. Zhang, Comput. Mater. Sci. 105 (2015) 55-65.
DOI URL |
[30] |
N. Zhou, C. Shen, M.F.X. Wagner, G. Eggeler, M.J. Mills, Y. Wang, Acta Mater. 58 (2010) 6685-6694.
DOI URL |
[31] |
W. Tirry, D. Schryvers, Acta Mater. 53 (2005) 1041-1049.
DOI URL |
[32] |
T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52 (2004) 137-147.
DOI URL |
[33] |
T. Waitz, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Technol. 24 (2008) 934-940.
DOI URL |
[34] |
T. Waitz, D. Spišák, J. Hafner, H.P. Karnthaler, Europhys. Lett. 71 (2005) 98-103.
DOI URL |
[35] |
T. Waitz, T. Antretter, F.D. Fischer, N.K. Simha, H.P. Karnthaler, J. Mech. Phys. Solids 55 (2007) 419-444.
DOI URL |
[36] |
T. Hara, T. Ohba, E. Okunishi, K. Otsuka, Mater. Trans. JIM 38 (1997) 11-17.
DOI URL |
[37] |
C.R.M. Afonso, P.L. Ferrandini, A.J. Ramirez, R. Caram, Acta Biomater. 6 (2010) 1625-1629.
DOI URL |
[38] |
M.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74 (1998) 131-146.
DOI URL |
[39] | N. Cherkashin, M.J. Hÿtch, E. Snoeck, A. Claverie, J.M. Hartmann, Y. Bogumilow- icz, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 124-125 (2005) 118-122. |
[40] |
J. Douin, P. Donnadieu, F. Houdellier, Acta Mater. 58 (2010) 5782-5788.
DOI URL |
[41] |
J.S. Zhang, S.J. Hao, D.Q. Jiang, Y. Huan, L.S. Cui, Y.N. Liu, H. Yang, Y. Ren, Acta Mater. 130 (2017) 297-309.
DOI URL |
[42] |
J.S. Zhang, S.J. Hao, D.Q. Jiang, Y. Huan, L.S. Cui, Y.N. Liu, Y. Ren, H. Yang, Nano Lett. 18 (2018) 2976-2983.
DOI URL |
[43] | J. Trapp, A.M. Rubenchik, G. Guss, M.J. Matthews, Appl. Mater. Today 9 (2017) 341-349. |
[44] |
T. Bormann, R. Schumacher, B. Müller, M. Mertmann, M. De Wild, J. Mater. Eng. Perform. 21 (2012) 2519-2524.
DOI URL |
[45] |
S. Dadbakhsh, M. Speirs, J.P. Kruth, J. Schrooten, J. Luyten, J. Van Humbeeck, Adv. Eng. Mater. 16 (2014) 1140-1146.
DOI URL |
[46] | R. Seede, D. Shoukr, B. Zhang, A. Whitt, S. Gibbons, P. Flater, A. Elwany, R. Ar-royave I.Karaman, ActaMater. 186(2020)199-214. |
[47] |
T. Guraya, S. Singamneni, Z.W. Chen, J. Alloy. Compd. 792 (2019) 151-160.
DOI |
[48] |
M.J. Xia, D.D. Gu, G.Q. Yu, D.H. Dai, H.Y. Chen, Q.M. Shi, Sci. Bull. 61 (2016) 1013-1022.
DOI URL |
[49] |
Q. Tan, Y. Liu, Z. Fan, J. Zhang, Y. Yin, M.X. Zhang, J. Mater. Sci. Technol. 58 (2020) 34-45.
DOI URL |
[50] |
C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J.C.D. Qiu, C.N. Sun, J. Liu, Q. Wei, Y. Shi, J. Mater. Sci. Technol. 57 (2020) 51-64.
DOI URL |
[51] |
A. Radi, J. Khalil-Allafi, M.R. Etminanfar, S. Pourbabak, D. Schryvers, B. Am- in-Ahmadi, Mater. Des. 142 (2018) 93-100.
DOI URL |
[52] |
O. Bojda, G. Eggeler, A. Dlouhý, Scr. Mater. 53 (2005) 99-104.
DOI URL |
[53] |
C.B. Ke, S.S. Cao, X. Ma, X.P. Zhang, Trans. Nonferrous Met. Soc. China 22 (2012) 2578-2585.
DOI URL |
[54] |
D.Y. Li, L.Q. Chen, Acta Mater. 45 (1997) 471-479.
DOI URL |
[55] |
C.L. Ma, D.D. Gu, D.H. Dai, M.J. Xia, H.Y. Chen, Mater. Charact. 143 (2018) 191-196 c.
DOI URL |
[56] | W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th Ed.,Trans Tech Publi- cation Ltd., Switzerland, 1988. |
[57] |
P. Chowdhury, H. Sehitoglu, Prog. Mater. Sci. 88 (2017) 49-88.
DOI URL |
[58] |
H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier, Y. Chumlyakov, Acta Mater. 48 (2000) 3311-3326.
DOI URL |
[59] |
Y. Liu, D. Favier, Acta Mater. 48 (2000) 3489-3499.
DOI URL |
[60] | S.J. Hao, L.S. Cui, Y.D. Wang, D.Q. Jiang, C. Yu, J. Jiang, D.E. Brown, Y. Ren, Appl. Phys. Lett. 99 (2011) 2011-2014. |
[61] |
S.J. Hao, L.S. Cui, D.Q. Jiang, X.D. Han, Y. Ren, J. Jiang, Y.N. Liu, Z.Y. Liu, S.C. Mao, Y.D. Wang, Y. Li, X.B. Ren, X.D. Ding, S. Wang, C. Yu, X.B. Shi, M.S. Du, F. Yang, Y.J. Zheng, Z. Zhang, X.D. Li, D.E. Brown, J. Li, Science 339 (2013) 1191-1194.
DOI URL |
[62] | C. DellaCorte, R.D. Noebe, M.K. Stanford, S.A. Padula, STP 1542, ASTM Interna- tional, West Conshohocken, PA, 2012, pp. 143-166. |
[63] | C. Dellacore, L.E. Moore III, J.S. Clifton, NASA/TM-2014-216627, May 2014, Glenn Research Center, Cleveland, Ohio. |
[64] |
D.E. Burkes, J.J. Moore, J. Alloy. Compd. 430 (2007) 274-281.
DOI URL |
[65] |
L. Hu, A. Kothalkar, G. Proust, I. Karaman, M. Radovic, J. Alloy. Compd. 610 (2014) 635-644.
DOI URL |
[66] | M. Farvizi, T. Ebadzadeh, M.R. Vaezi, E.Y. Yoon, Y.J. Kim, J.Y. Kang, H.S. Kim, A. Simchi, Wear 334-335 (2015) 35-43. |
[67] |
H. Yang, L.M. Qian, Z.R. Zhou, X.H. Ju, H.S. Dong, Tribol. Lett. 25 (2007) 215-224.
DOI URL |
[68] |
A.W. Hassel, Minim. Invasive Ther. Allied Technol. 13 (2004) 240-247.
DOI URL |
[69] |
C. Ye, S. Suslov, X. Fei, G.J. Cheng, Acta Mater. 59 (2011) 7219-7227.
DOI URL |
[70] | T. Hua, C.L. Chub, J. Luc, P.K. Chu, in: Proceedings of the INEC 2010-2010 3rd International Nanoelectronics Conference, Proceedings, 2010, pp. 580-582. |
[1] | Jiaying Jin, Yongming Tao, Xinhua Wang, Zeyu Qian, Wang Chen, Chen Wu, Mi Yan. Concurrent improvements of corrosion resistance and coercivity in Nd-Ce-Fe-B sintered magnets through engineering the intergranular phase [J]. J. Mater. Sci. Technol., 2022, 110(0): 239-245. |
[2] | Jiasi Luo, Wanting Sun, Ranxi Duan, Wenqing Yang, K.C. Chan, Fuzeng Ren, Xu-Sheng Yang. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance [J]. J. Mater. Sci. Technol., 2022, 110(0): 43-56. |
[3] | Yafeng Yang, Kang Geng, Shaofu Li, Michael Bermingham, R.D.K. Misra. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 110(0): 84-95. |
[4] | Qimin Shi, Shoufeng Yang, Yi Sun, Yifei Gu, Ben Mercelis, Shengping Zhong, Bart Van Meerbeek, Constantinus Politis. In-situ formation of Ti-Mo biomaterials by selective laser melting of Ti/Mo and Ti/Mo2C powder mixtures: A comparative study on microstructure, mechanical and wear performance, and thermal mechanisms [J]. J. Mater. Sci. Technol., 2022, 115(0): 81-96. |
[5] | Xu Liu, Lin Song, Andreas Stark, Uwe Lorenz, Zhanbing He, Junpin Lin, Florian Pyczak, Tiebang Zhang. Deformation and phase transformation behaviors of a high Nb-containing TiAl alloy compressed at intermediate temperatures [J]. J. Mater. Sci. Technol., 2022, 102(0): 89-96. |
[6] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[7] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[8] | Z.W. Wang, J.F. Zhang, G.M. Xie, L.H. Wu, H. Zhang, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma. Evolution mechanisms of microstructure and mechanical properties in a friction stir welded ultrahigh-strength quenching and partitioning steel [J]. J. Mater. Sci. Technol., 2022, 102(0): 213-223. |
[9] | Dina Bayoumy, Kwangsik Kwak, Torben Boll, Stefan Dietrich, Daniel Schliephake, Jie Huang, Junlan Yi, Kazuki Takashima, Xinhua Wu, Yuman Zhu, Aijun Huang. Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 121-133. |
[10] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[11] | Zs. Veres, A. Roósz, A. Rónaföldi, A. Sycheva, M. Svéda. The effect of melt flow induced by RMF on the meso- and micro-structure of unidirectionally solidified Al-7wt.% Si alloy Benchmark experiment under magnetic stirring [J]. J. Mater. Sci. Technol., 2022, 103(0): 197-208. |
[12] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[13] | Muzhi Ma, Zhu Xiao, Xiangpeng Meng, Zhou Li, Shen Gong, Jie Dai, Hongyun Jiang, Yanbin Jiang, Qian Lei, Haigen Wei. Effects of trace calcium and strontium on microstructure and properties of Cu-Cr alloys [J]. J. Mater. Sci. Technol., 2022, 112(0): 11-23. |
[14] | Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia. Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method [J]. J. Mater. Sci. Technol., 2022, 111(0): 224-235. |
[15] | Yinuo Guo, Haijun Su, Haotian Zhou, Zhonglin Shen, Yuan Liu, Jun Zhang, Lin Liu, Hengzhi Fu. Unique strength-ductility balance of AlCoCrFeNi2.1 eutectic high entropy alloy with ultra-fine duplex microstructure prepared by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 111(0): 298-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||