J. Mater. Sci. Technol. ›› 2022, Vol. 116: 180-191.DOI: 10.1016/j.jmst.2021.11.045
• Research Article • Previous Articles Next Articles
Guanpeng Liua, Yulong Lia,b,**(), Ming Yanc, Jicai Fengd,*(
), Jian Caod, Min Leia, Quanwen Liue, Xiaowu Hua, Wenqin Wanga, Xuewen Lif
Received:
2021-09-26
Revised:
2021-11-08
Accepted:
2021-11-30
Published:
2022-01-01
Online:
2022-07-26
Contact:
Yulong Li,Jicai Feng
About author:
∗∗ Key Lab for Robot and Welding Automation of Jiangxi Province, Mechanical and Electrical Engineering School, Nanchang University, Nan- chang 330031, China. E-mail addresses: liyulong@ncu.edu.cn (Y. Li)Guanpeng Liu, Yulong Li, Ming Yan, Jicai Feng, Jian Cao, Min Lei, Quanwen Liu, Xiaowu Hu, Wenqin Wang, Xuewen Li. Vacuum wetting of Ag/TA2 to develop a novel micron porous Ti with significant biocompatibility and antibacterial activity[J]. J. Mater. Sci. Technol., 2022, 116: 180-191.
Fig. 1. Fabrication of the porous Ti: (a) temperature profiles for the vacuum wetting experiment; macro morphology of the Ag/TA2 specimen (b) before and (c) after the wetting experiment; (d) schematic diagram for preparing the porous structure on the surface of TA2.
Fig. 3. Microstructure characteristics of the porous Ti: (a) and (b) the central area and edge area of the wetting area (porous structure), (c) cross-section of the porous structure, (d) enlarged morphology of the selected area in (a), (e) enlarged morphology of the selected area in (b), (f) enlarged morphology of (c), (g) enlarged morphology of (d), (h) enlarged morphology of (e), and (i) enlarged morphology of the selected area in (f), the inserted images in (e) and (i) are line scan distributions.
Empty Cell | EDS results (at.%) | ||||||
---|---|---|---|---|---|---|---|
Elements | A | B | C | D | E | F | G |
Ti | 97.56 | 95.96 | 97.41 | 100 | 98.44 | 98.63 | 100 |
Ag | 2.44 | 4.04 | 2.59 | 0 | 2.56 | 1.37 | 0 |
Table 1. The EDS analysis associated with Fig. 3.
Empty Cell | EDS results (at.%) | ||||||
---|---|---|---|---|---|---|---|
Elements | A | B | C | D | E | F | G |
Ti | 97.56 | 95.96 | 97.41 | 100 | 98.44 | 98.63 | 100 |
Ag | 2.44 | 4.04 | 2.59 | 0 | 2.56 | 1.37 | 0 |
Fig. 4. The elemental compositions of the porous structure: (a) EDS analysis of the porous structure, (b) XRD patterns of TA2 substrate and porous structure.
Phase transition | Type | Temperature ( °C) |
---|---|---|
(βTi)+Ag(Liquid)⇄TiAg | Peritectic reaction | 1020 ± 5 |
(βTi)+TiAg⇄Ti2Ag | Peritectoid reaction | 940 ± 5 |
(βTi)⇄(αTi)+Ti2Ag | Eutectoid reaction | 855 ± 5 |
Ag(Liquid)⇄TiAg+Ag(Solid) | Eutectic reaction | 959 ± 1 |
Table 2. Phase transition reaction in the Ag-Ti system.
Phase transition | Type | Temperature ( °C) |
---|---|---|
(βTi)+Ag(Liquid)⇄TiAg | Peritectic reaction | 1020 ± 5 |
(βTi)+TiAg⇄Ti2Ag | Peritectoid reaction | 940 ± 5 |
(βTi)⇄(αTi)+Ti2Ag | Eutectoid reaction | 855 ± 5 |
Ag(Liquid)⇄TiAg+Ag(Solid) | Eutectic reaction | 959 ± 1 |
Fig. 5. TEM images of the representative areas of the porous structure: (a-c) in different areas, (d) HRTEM image of the AgNPs in (a), (e) the SAED of the black precipitate (AgNPs), (f) the SAED of the matrix (α-Ti), and (g) and (h) STEM images and (i) and (j) EDS mapping of the AgNPs.
Test 1 | Pre-experiment (g) | Post-experiment (g) | Weight-loss (g) |
---|---|---|---|
Sample 1 (Ag/TA2) | 0.4752 | 0.4643 | 0.0109 |
Sample 2 (Ag/TA2) | 0.4707 | 0.4609 | 0.0098 |
Sample 3 (Ag/TA2) | 0.4742 | 0.4623 | 0.0119 |
Sample 4 (Ag/TA2) | 0.4715 | 0.4612 | 0.0103 |
Sample 5 (TA2) | 0.4563 | 0.4563 | 0.0000 |
Table 3. The weight change of the samples performed in vacuum.
Test 1 | Pre-experiment (g) | Post-experiment (g) | Weight-loss (g) |
---|---|---|---|
Sample 1 (Ag/TA2) | 0.4752 | 0.4643 | 0.0109 |
Sample 2 (Ag/TA2) | 0.4707 | 0.4609 | 0.0098 |
Sample 3 (Ag/TA2) | 0.4742 | 0.4623 | 0.0119 |
Sample 4 (Ag/TA2) | 0.4715 | 0.4612 | 0.0103 |
Sample 5 (TA2) | 0.4563 | 0.4563 | 0.0000 |
Test 2 | Pre-experiment (g) | Post-experiment (g) | Weight-loss (g) |
---|---|---|---|
Sample 6 (Ag/TA2) | 0.4644 | 0.4649 | -0.0005 |
Sample 7 (Ag/TA2) | 0.4652 | 0.4654 | -0.0002 |
Sample 8 (Ag/TA2) | 0.4628 | 0.4635 | -0.0007 |
Sample 9 (Ag/TA2) | 0.4680 | 0.4683 | -0.0003 |
Sample 10 (TA2) | 0.4458 | 0.4460 | -0.0002 |
Table 4. The weight change of samples performed in ultrahigh purity argon.
Test 2 | Pre-experiment (g) | Post-experiment (g) | Weight-loss (g) |
---|---|---|---|
Sample 6 (Ag/TA2) | 0.4644 | 0.4649 | -0.0005 |
Sample 7 (Ag/TA2) | 0.4652 | 0.4654 | -0.0002 |
Sample 8 (Ag/TA2) | 0.4628 | 0.4635 | -0.0007 |
Sample 9 (Ag/TA2) | 0.4680 | 0.4683 | -0.0003 |
Sample 10 (TA2) | 0.4458 | 0.4460 | -0.0002 |
Fig. 7. Results of electrochemical tests of the porous Ti and TA2 in Hanks’ SBF solution: (a) polarization curves, (b) Nyquist plots, (c) Bode plots of impedance versus frequency, (d) Bode plots of phase angle vs frequency (inserted image means the EC).
Sample | Ecorr (mV) | Icorr (μA cm-2) | Corrosion condition | Refs. |
---|---|---|---|---|
Porous Ti | -129 | 0.163 | Hanks’ SBF solution | Present |
TA2 | -147 | 0.386 | Hanks’ SBF solution | Present |
316 L SS | -431 | 0.853 | Hanks’ SBF solution | [ |
NiTi | -99 | 0.872 | Hanks’ SBF solution | [ |
TC4 | -178 | 0.169 | Hanks’ SBF solution | [ |
Table 5. Corrosion parameters of the porous Ti and TA2 samples.
Sample | Ecorr (mV) | Icorr (μA cm-2) | Corrosion condition | Refs. |
---|---|---|---|---|
Porous Ti | -129 | 0.163 | Hanks’ SBF solution | Present |
TA2 | -147 | 0.386 | Hanks’ SBF solution | Present |
316 L SS | -431 | 0.853 | Hanks’ SBF solution | [ |
NiTi | -99 | 0.872 | Hanks’ SBF solution | [ |
TC4 | -178 | 0.169 | Hanks’ SBF solution | [ |
Sample | Rp (Ω cm2) | Rs (Ω cm2) | Rt (Ω cm2) | CPE-t (F cm-2) | CPE-p |
---|---|---|---|---|---|
Porous Ti | 132,672.05 | 12.05 | 132,660 | 1.61 × 10-5 | 0.927 |
TA2 | 105,505.31 | 10.31 | 105,495 | 2.59 × 10-4 | 0.901 |
Table 6. Corrosion parameters of the porous Ti and TA2 from the EIS spectra.
Sample | Rp (Ω cm2) | Rs (Ω cm2) | Rt (Ω cm2) | CPE-t (F cm-2) | CPE-p |
---|---|---|---|---|---|
Porous Ti | 132,672.05 | 12.05 | 132,660 | 1.61 × 10-5 | 0.927 |
TA2 | 105,505.31 | 10.31 | 105,495 | 2.59 × 10-4 | 0.901 |
Fig. 8. SEM images of the HEPG-2, HUVEC, and MG-63 cells incubated on porous Ti for 2 h: (a) and (b) HEPG-2 cells, (c) and (d) HUVEC cells, (e) and (f) MG-63 cells.
Fig. 9. Optical density measurements for (a) HEPG-2, (b) HUVEC, and (c) MG-63 cells proliferation on the TA2 and porous Ti samples after 24, 72, and 120 h of culture (Note: *** means P < 0.001 compared to TA2).
[1] |
T. Liang, Y.P. Wang, L.L. Zeng, Y.Z. Liu, L.P. Qiao, S.F. Zhang, R.F. Zhao, G.Q. Li, R.F. Zhang, J.J. Xiang, F.C. Xiong, A. Shanaghi, H.B. Pan, Y. Zhao, Appl. Surf. Sci. 509 (2020) 144717.
DOI URL |
[2] |
C.W. Tan, C.W. Zang, X.Y. Zhao, H.B. Xia, Q.S. Lu, X.G. Song, G. Wang, Opt. Laser Technol. 108 (2018) 378-391.
DOI URL |
[3] |
S.H. Chen, J.H. Huang, D.H. Cheng, H. Zhang, X.K. Zhao, Mater. Sci. Eng. A 541 (2012) 110-119.
DOI URL |
[4] |
G. Rotella, M. Alfano, S. Candamano, CIRP Ann. Manuf. Technol. 64 (2015) 527-530.
DOI URL |
[5] |
R. Novakovic, T. Tanaka, M.L. Muolo, J. Lee, A. Passerone, Surf. Sci. 591 (2005) 56-69.
DOI URL |
[6] |
C.F. Liu, S.J. Li, W.T. Hou, Y.L. Hao, H.H. Huang, Appl. Surf. Sci. 476 (2019) 325-334.
DOI URL |
[7] |
S. Arabnejad, B. Johnston, M. Tanzer, D. Pasini, J. Orthop. Res. 35 (2017) 1774-1783.
DOI PMID |
[8] |
M. Shbeh, A. Yerokhin, R. Goodall, Appl. Surf. Sci. 439 (2018) 801-814.
DOI URL |
[9] |
X. Rao, C.L. Chu, Y.Y. Zheng, J. Mech. Behav. Biomed. Mater. 34 (2014) 27-36.
DOI PMID |
[10] |
E. Sallica-Leva, A.L. Jardini, J.B. Fogagnolo, J. Mech. Behav. Biomed. Mater. 26 (2013) 98-108.
DOI PMID |
[11] |
G. He, P. Liu, Q.B. Tan, J. Mech. Behav. Biomed. Mater. 5 (2012) 16-31.
DOI URL |
[12] | S. Amin Yavari, L. Loozen, F.L. Paganelli, S. Bakhshandeh, K. Lietaert, J.A. Groot, A.C. Fluit, C.H.E. Boel, J. Alblas, H.C. Vogely, H. Weinans, A.A. Zadpoor, ACS Appl. Mater. Interfaces 8 (2016) 17080-17089. |
[13] |
F.P. Li, J.S. Li, G.S. Xu, G.S. Liu, H.C. Kou, L. Zhou, J. Mech. Behav. Biomed. Mater. 46 (2015) 104-114.
DOI URL |
[14] |
J.C. Li, D.C. Dunand, Acta Mater. 59 (2011) 146-158.
DOI URL |
[15] |
M. Bram, C. Stiller, H.P. Buchkremer, D. Stöver, H. Baur, Adv. Eng. Mater. 2 (2000) 196-199.
DOI URL |
[16] |
Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, T.B. Sercombe, Scr. Mater. 153 (2018) 99-103.
DOI URL |
[17] |
R. Li, N. Wu, J.J. Liu, Y. Jin, X.B. Chen, T. Zhang, Corros. Sci. 119 (2017) 23-32.
DOI URL |
[18] |
B. Chang, W. Song, T.X. Han, J. Yan, F.P. Li, L.Z. Zhao, H.C. Kou, Y.M. Zhang, Acta Biomater. 33 (2016) 311-321.
DOI PMID |
[19] |
Y.J. Chen, B. Feng, Y.P. Zhu, J. Weng, J.X. Wang, X. Lu, Mater. Lett. 63 (30) (2009) 2659-2661.
DOI URL |
[20] |
I.H. Oh, N. Nomura, N. Masahashi, S. Hanada, Scr. Mater. 49 (2003) 1197-1202.
DOI URL |
[21] |
S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Ooster- wyck, J.P. Krutha, J. Schrootenc, Acta Biomater. 8 (2012) 2824-2834.
DOI PMID |
[22] |
L.C. Zhang, L.Y. Chen, Adv. Eng. Mater. 21 (2019) 1801215.
DOI URL |
[23] |
A. Leonhardt, G. Dahlen, Eur. J. Oral Sci. 103 (1996) 382-387.
DOI URL |
[24] |
G.P. Liu, Y.L. Li, M. Lei, M. Yan, X.W. Hu, W.Q. Wang, X.W. Li, Mater. Lett. 294 (2021) 129802.
DOI URL |
[25] |
A. Etiemble, C. Der Loughian, M. Apreutesei, C. Langlois, S. Cardinal, J.M. Pel- letier, J.F. Pierson, P. Steyer, J. Alloy Compd. 707 (2017) 155-161.
DOI URL |
[26] |
G.I. Nkou Bouala, A. Etiemble, C. Der Loughian, C. Langlois, J.F. Pierson, P. Steyer, Surf. Coat. Technol. 343 (2018) 108-114.
DOI URL |
[27] |
D. Wojcieszak, M. Mazur, D. Kaczmarek, P. Mazur, B. Szponar, J. Domaradzki, L. Kepinski, Mater. Sci. Eng. C 62 (2016) 86-95.
DOI URL |
[28] |
Y.L. Li, Z.L. Wang, W.F. Long, M. Lei, X.W. Hu, J. Mater. Sci. Mater. Electron. 29 (2018) 13914-13924.
DOI URL |
[29] |
Y.P. Dong, J.C. Tang, D.W. Wang, N. Wang, Z.D. He, J. Li, D.P. Zhao, M. Yan, Mater. Des. 196 (2020) 109142.
DOI URL |
[30] |
R.L. Williams, S.A. Brown, K. Merritt, Biomaterials 9 (1988) 181-186.
PMID |
[31] |
G. Dercz, I. Matuła, M. Zubko, A. Kazek-K ˛esik, J. Maszybrocka, W. Simka, J. Dercz, P. ´Swiec, I. Jendrzejewska, Mater. Charact. 142 (2018) 124-136.
DOI URL |
[32] |
M. Chen, E. Zhang, L. Zhang, Mater. Sci. Eng. C 62 (2016) 350-360.
DOI URL |
[33] |
S.Y. Lee, Y. Iijima, O. Taguchi, K.I. Hirano, J. Jpn. Inst. Met. 54 (1990) 502-508.
DOI URL |
[34] |
Y. Wang, T.L. Alford, Appl. Phys. Lett. 74 (1999) 52-54.
DOI URL |
[35] |
M. Haftbaradaran-Esfahani, M. Ahmadian, A.H. Nassajpour-Esfahani, Appl. Surf. Sci. 506 (2020) 144959.
DOI URL |
[36] | L. Gao, B. Feng, J.X. Wang, X. Lu, D.L. Liu, S.X. Qu, J. Weng, J. Biomed. Mater. Res. Part B 89B(2009) 335-341. |
[37] | K.C. Popat, K.I. Chatvanichkul, G.L. Barnes, T.J. Latempa Jr, C.A. Grimes, T.A. De- sai, J. Biomed. Mater. Res. Part A 80A (2007) 955-964. |
[38] | V. Bhat, S.S. Balaji, J. Health Allied Sci. 4 (2014) 46-54 NU. |
[39] | G. Balasundaram, C. Yao, T.J. Webster, J. Biomed. Mater. Res. Part A 84 (2008) 447-453. |
[40] |
L. Peng, A.D. Mendelsohn, T.J. LaTempa, S. Yoriya, C.A. Grimes, T.A. Desai, Nano Lett. 9 (2009) 1932-1936.
DOI URL |
[41] |
J.L. Murray, K.J. Bhansali, Bull. Alloy Phase Diagr. 4 (1983) 178-183.
DOI URL |
[42] |
M. Li, C.R. Li, F.M. Wang, W.J. Zhang, Calphad 29 (2005) 269-275.
DOI URL |
[1] | Lujie Zhang, Jie Pan, Jue Zhang. Integrated two-phase free radical hydrogel: Safe, ultra-fast tooth whitening and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 100(0): 59-66. |
[2] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[3] | Lijun Fan, Wenxin Sun, Yuhong Zou, Qian-qian Xu, Rong-Chang Zeng, Jingrui Tian. Enhanced corrosion resistance, antibacterial activity and biocompatibility of gentamicin-montmorillonite coating on Mg alloy-in vitro and in vivo studies [J]. J. Mater. Sci. Technol., 2022, 111(0): 167-180. |
[4] | Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2021, 88(0): 240-249. |
[5] | Jiahui Chen, Dainan Zhang, Song He, Gengpei Xia, Xiaoyi Wang, Quanjun Xiang, Tianlong Wen, Zhiyong Zhong, Yulong Liao. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification [J]. J. Mater. Sci. Technol., 2021, 66(0): 157-162. |
[6] | Alejandra Rodriguez-Contreras, Miquel Punset, José A. Calero, Francisco JavierGil, Elisa Ruperez, José María Manero. Powder metallurgy with space holder for porous titanium implants: A review [J]. J. Mater. Sci. Technol., 2021, 76(0): 129-149. |
[7] | Jiajun Qiu, Lu Liu, Shi Qian, Wenhao Qian, Xuanyong Liu. Why does nitrogen-doped graphene oxide lose the antibacterial activity? [J]. J. Mater. Sci. Technol., 2021, 62(0): 44-51. |
[8] | Gopinathan Janarthanan, Insup Noh. Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications [J]. J. Mater. Sci. Technol., 2021, 63(0): 35-53. |
[9] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[10] | Dan He, Haiyan Li. Biomaterials affect cell-cell interactions in vitro in tissue engineering [J]. J. Mater. Sci. Technol., 2021, 63(0): 62-72. |
[11] | Pengfei Ji, Bohan Chen, Bo Li, Yihao Tang, Guofeng Zhang, Xinyu Zhang, Mingzhen Ma, Riping Liu. Influence of Nb addition on microstructural evolution and compression mechanical properties of Ti-Zr alloys [J]. J. Mater. Sci. Technol., 2021, 69(0): 7-14. |
[12] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
[13] | Alireza Nouri, Anahita Rohani Shirvan, Yuncang Li, Cuie Wen. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review [J]. J. Mater. Sci. Technol., 2021, 94(0): 196-215. |
[14] | Tianqi Chang, Chunxia Liu, Kunyan Lu, Yong Wu, Mingzhu Xu, Qian Yu, Zhenya Shen, Tingbo Jiang, Yanxia Zhang. Biomaterials based cardiac patches for the treatment of myocardial infarction [J]. J. Mater. Sci. Technol., 2021, 94(0): 77-89. |
[15] | Junlei Li, Ling Qin, Ke Yang, Zhijie Ma, Yongxuan Wang, Liangliang Cheng, Dewei Zhao. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. J. Mater. Sci. Technol., 2020, 36(0): 190-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||