J. Mater. Sci. Technol. ›› 2022, Vol. 115: 40-51.DOI: 10.1016/j.jmst.2021.11.022
• Research Article • Previous Articles Next Articles
Hongge Lia, Wenjie Zhaoa, Tian Chena, Yongjiang Huanga,*(), Jianfei Suna, Ping Zhub, Yunzhuo Lub,*(
), Alfonso H.W. Nganc,*(
), Daqing Weid, Qing Dud, Yongchun Zoud
Received:
2021-10-09
Revised:
2021-11-11
Accepted:
2021-11-12
Published:
2022-07-10
Online:
2022-01-19
Contact:
Yongjiang Huang,Yunzhuo Lu,Alfonso H.W. Ngan
About author:
hwngan@hku.hk (A.H.W. Ngan).1These authors contributed equally to this work.
Hongge Li, Wenjie Zhao, Tian Chen, Yongjiang Huang, Jianfei Sun, Ping Zhu, Yunzhuo Lu, Alfonso H.W. Ngan, Daqing Wei, Qing Du, Yongchun Zou. Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy: cyclic vs single cryogenic cooling[J]. J. Mater. Sci. Technol., 2022, 115: 40-51.
Fig. 1. Additive manufacturing and cyclic deep cryogenic treatment (CDCT) of bulk CoCrFeMnNi HEA samples: (a) schematic illustration of the LMD experimental setup; (b, c) SEM image and the particle size distribution of the raw CoCrFeMnNi HEA powders; (d) schematic diagram of CDCT process; (e) extraction schemes of dog-bone tensile samples from the top, middle and bottom locations of the LMD-built samples along the BD.
Fig. 2. Comparison of residual stress distribution in LMD-built CoCrFeMnNi treated with cyclic and single-step DCT: (a, b) residual stress at the center of LMD-built blocks after (a) CDCT for different cycles and (b) single-step DCT for different cryogenic durations [15] (error bars indicate ranges of five repeated measurements in each condition); (c) schematic diagram of 11 × 11 matrix for the residual stress measurement; (d-i) residual stress distributions over middle BD × SD plane of the LMD-built blocks after different DCT conditions: (d) as-built, (e, g, i) CDCT for 2, 4 and 10 cycles, and (f, h) single-step DCT for 24 and 48 h ((e) and (f) have same cryogenic duration of 24 h, and (g) and (h) have same cryogenic duration of 48 h, common stress scale applies to all stress distributions shown); (j) average residual stress value at each height along the BD of the LMD-built and CDCT-processed HEA samples.
Fig. 3. Comparison of tensile behavior of LMD-built CoCrFeMnNi treated with cyclic and single-step DCT: (a) engineering stress-strain curves of CDCT samples of different cryogenic cycles extracted from the middle; (b) engineering stress-strain curves of single-step DCT samples of different cryogenic durations extracted from the middle [15]; (c) engineering stress-strain curves of samples extracted from the top; (d) engineering stress-strain curves of samples extracted from the bottom.
Sample | σys (MPa) | σUTS (MPa) | ε (%) |
---|---|---|---|
As-built | 290 ± 9 | 455 ± 16 | 33.4 ± 1.9 |
DCT-1 | 383 ± 12 | 565 ± 21 | 35.9 ± 3.2 |
DCT-2 | 495 ± 11 | 695 ± 14 | 41.8 ± 4.4 |
DCT-4 | 580 ± 15 | 805 ± 16 | 37.3 ± 2.8 |
DCT-10 | 670 ± 13 | 895 ± 24 | 31.5 ± 3.6 |
Table 1. Summary of tensile properties of the LMD-built and CDCT-processed CoCrFeMnNi HEA samples in the present work.
Sample | σys (MPa) | σUTS (MPa) | ε (%) |
---|---|---|---|
As-built | 290 ± 9 | 455 ± 16 | 33.4 ± 1.9 |
DCT-1 | 383 ± 12 | 565 ± 21 | 35.9 ± 3.2 |
DCT-2 | 495 ± 11 | 695 ± 14 | 41.8 ± 4.4 |
DCT-4 | 580 ± 15 | 805 ± 16 | 37.3 ± 2.8 |
DCT-10 | 670 ± 13 | 895 ± 24 | 31.5 ± 3.6 |
Fig. 4. XRD patterns of LMD-built CoCrFeMnNi treated with cyclic and single-step DCT: (a) XRD patterns of cyclic and single-step DCT samples; (b) right shift of (200) peaks of the LMD-built and cyclic and single-step DCT-processed samples, corresponding to the compressive residual stress data in Fig. 2(a, b). Data for DCT24h, DCT48h and DCT120h from Ref. [15].
Fig. 5. TEM microstructures of CDCT samples: BF-TEM images of (a) the LMD-built and CDCT-processed CoCrFeMnNi HEA samples with (b) one, (c) two, (d) four and (e, f) ten cryogenic soaking cycles. Insets show the corresponding SAED patterns taken from regions highlighted by red dashed circles.
Fig. 6. TEM microstructures of the as-built, DCT24h, and DCT-2 samples: BF-TEM images showing the typical microstructures at the top and bottom regions of the (a, d) as-built, (b, e) DCT24h, and (c, f) DCT-2 samples, respectively.
Fig. 7. HR-TEM analysis of the DCT-4 sample: (a) typical BF-TEM image showing the various crystalline defects; (b) schematic of a defect microstructure; (c, d) HR-TEM images indicating the phase transformation from FCC to HCP; (e-g) HR-TEM images of typical microstructures of nanotwins and stacking faults.
Fig. 8. HR-TEM analysis of the DCT-1 sample: representative nanotwins and stacking faults with (b) the enlarged HR-TEM image highlighted by the white box in (a).
Fig. 9. HR-TEM analysis of the DCT-10 sample: (a) BF-TEM with SAED pattern shown in the inset taken from the region highlighted by the white dashed box; (b) HR-TEM image of the DCT-10 sample showing the representative nanograin microstructure.
Fig. 10. TEM deformation microstructures of DCT-4 state at different tensile strains: (a1-d1) BF-TEM and corresponding (a2-d2) HR-TEM micrographs marked by white dashed boxes exhibiting twin evolution with increasing tensile strain at room temperature; (a3-d3) BF-TEM micrographs showing the evolution of dislocation structure with increasing tensile strain. Nanotwins and stacking faults are labeled as NT (yellow arrows) and SF (red arrows), respectively.
Fig. 11. FEM simulation of residual stress after single-step and cyclic DCT: stress vs soaking time in (a) the single-step DCT48h, and (b) the cyclic DCT-4 process. Stress values at their peak or end of the process cycles are indicated, with TRS and CRS denoting tensile and compressive residual stress, respectively. Temperature variation over time is also shown (green curves).
[1] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112-224.
DOI URL |
[2] |
J.P. Oliveira, T.G. Santos, R.M. Miranda, Prog. Mater. Sci. 107 (2020) 100590.
DOI URL |
[3] |
Y.T. Tang, C. Panwisawas, J.N. Ghoussoub, Y.L. Gong, J.W.G. Clark, A.A.N. Németh, D.G. McCartney, R.C. Reed, Acta Mater. 202 (2021) 417-436.
DOI URL |
[4] |
D.Y. Zhang, D. Qiu, M.A. Gibson, Y.F. Zheng, H.L. Fraser, D.H. StJohn, M.A. Eas-ton, Nature 576 (2019) 91-95.
DOI URL |
[5] |
J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature 549 (2017) 365-369.
DOI URL |
[6] |
P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, D. Raabe, Nature 582 (2020) 515-519.
DOI URL |
[7] |
A.O. Moghaddam, N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, E.A. Trofimov, J. Mater. Sci. Technol. 77 (2021) 131-162.
DOI |
[8] |
W. Fan, H. Tan, F.Y. Zhang, Z. Feng, Y.X. Wang, L.C. Zhang, X. Lin, W.D. Huang, J. Mater. Sci. Technol. 94 (2021) 32-46.
DOI URL |
[9] | U. Zerbst, G. Bruno, J.Y. Buffiere, T. Wegener, T. Niendorf, T. Wu, X. Zhang, N. Kashaev, G. Meneghetti, N. Hrabe, M. Madia, T. Werner, K. Hilgenberg, M. Koukolíková, R. Procházka, J. Džugan, B. Möller, S. Beretta, A. Evans, R. Wa-gener, K. Schnabel, Prog.Mater.Sci. 121(2021)100786. |
[10] |
C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Nat. Commun. 11 (2020) 142.
DOI PMID |
[11] |
A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M. Guss, A.M. Kiss, K.H. Stone, C.J. Tassone, J.N. Weker, M.F. Toney, T.V. Buuren, M.J. Matthews, Nat. Commun. 10 (2019) 1987.
DOI PMID |
[12] |
H.G. Li, T.L. Lee, W. Zheng, Y.Z. Lu, H.B.C. Yin, J.X. Yang, Y.J. Huang, J.F. Sun, Mater. Lett. 263 (2020) 127247.
DOI URL |
[13] |
R. Pan, T. Pirling, J.H. Zheng, J.G. Lin, C.M. Davies, J. Mater. Process. Technol. 264 (2019) 454-468.
DOI URL |
[14] | Z.P. Tong, H.L. Liu, J.F. Jiao, W.F. Zhou, Y. Yang, X.D. Ren, J. Mater. Process. Tech-nol. 285 (2020) 116806. |
[15] | H.G. Li, Y.J. Huang, D.Q. Wei, Q. Du, Y.C. Zou, Z.J. Yu, Y.Z. Lu, P. Zhu, X. Lu, J.F. Sun, A.H.W. Ngan, Addit. Manuf. 50 (2022) 102546. |
[16] |
Z.J. Yan, K. Liu, J. Eckert, Mater. Sci. Eng. A 787 (2020) 139520.
DOI URL |
[17] |
Y.C. Meng, M. Villa, K.V. Dahl, T.L. Christiansen, M.A.J. Somers, Appl. Surf. Sci. 502 (2020) 144087.
DOI URL |
[18] |
K.X. Gu, H. Zhang, B. Zhao, J.J. Wang, Y. Zhou, Z.Q. Li, Mater. Sci. Eng. A 584 (2013) 170-176.
DOI URL |
[19] |
L.Y. Xu, J. Zhu, H.Y. Jing, L. Zhao, X.Q. Lu, Y.D. Han, Mater. Sci. Eng. A 673 (2016) 503-510.
DOI URL |
[20] |
B. Song, W.L. Xiao, J.S. Wang, C.L. Ma, L. Zhou, J. Alloy. Compd. 879 (2021) 160495.
DOI URL |
[21] |
J.F. Sun, A.P. Su, T.M. Wang, W.Y. Chen, W. Guo, Int. J. Fatigue 119 (2019) 261-267.
DOI URL |
[22] |
J. Li, J.Z. Zhou, S.Q. Xu, J. Sheng, S. Huang, Y.H. Sun, Q. Sun, E.A. Boateng, Mater. Sci. Eng. A 707 (2017) 612-619.
DOI URL |
[23] | B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. A 375-377 (2004) 213-218. |
[24] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[25] | O.N. Senkov, J.D. Miller, D.B. Miracle, C. Woodward, Nat. Commun. 6529 (2017) 6. |
[26] |
Z.Z. Li, S.T. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102 (2019) 296-345.
DOI URL |
[27] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[28] |
H.G. Li, Y.J. Huang, S.S. Jiang, Y.Z. Lu, X.Y. Gao, X. Lu, Z.L. Ning, J.F. Sun, Mater. Des. 197 (2021) 109262.
DOI URL |
[29] | H.G. Li, Y.J. Huang, J.F. Sun, Y.Z. Lu, J. Mater. Sci. Techonl. 77 (2021) 187-195. |
[30] |
Y.M. Qi, X.H. Chen, M.L. Feng, Mater. Sci. Eng. A 791 (2020) 139444.
DOI URL |
[31] |
H. Huang, J.Y. Wang, H.L. Yang, S.X. Ji, H.L. Yu, Z.L. Liu, Scr. Mater. 188 (2020) 216-221.
DOI URL |
[32] |
L. Sun, X.B. Ren, J.Y. He, Z.L. Zhang, J. Mater. Sci. Technol. 67 (2021) 11-22.
DOI |
[33] |
A. Ohta, M. Kosuge, T. Mawari, S. Nishijima, Int. J. Fatigue 10 (1988) 237-242.
DOI URL |
[34] |
H.P. Zhang, Z.Y. Cai, J.X. Chi, R.J. Sun, Z.G. Che, H.Q. Zhang, W. Guo, J. Alloy. Compd. 887 (2021) 161427.
DOI URL |
[1] | Xiaolin Li, Xiaoxiao Hao, Chi Jin, Qi Wang, Xiangtao Deng, Haifeng Wang, Zhaodong Wang. The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 110(0): 167-177. |
[2] | Fei Guo, Weijiu Huang, Xusheng Yang, Haipeng Dong, Hang Yu, Qiuyu Chen, Li Hu, Luyao Jiang. Variation of mechanical properties and microstructure of hot-rolled AA2099 Al-Li alloy induced by the precipitation during preheating process [J]. J. Mater. Sci. Technol., 2022, 110(0): 198-209. |
[3] | Pengfei Ji, Bohan Chen, Shuguang Liu, Bo Li, Chaoqun Xia, Xinyu Zhang, Mingzhen Ma, Riping Liu. Controlling the mechanical properties and corrosion behavior of biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition [J]. J. Mater. Sci. Technol., 2022, 110(0): 227-238. |
[4] | Wei Juene Chong, Shirley Shen, Yuncang Li, Adrian Trinchi, Dejana Pejak, Ilias (Louis) Kyratzis, Antonella Sola, Cuie Wen. Additive manufacturing of antibacterial PLA-ZnO nanocomposites: Benefits, limitations and open challenges [J]. J. Mater. Sci. Technol., 2022, 111(0): 120-151. |
[5] | H.T. Jeong, W.J. Kim. Effect of roll speed ratio on the texture and microstructural evolution of an FCC high-entropy alloy during differential speed rolling [J]. J. Mater. Sci. Technol., 2022, 111(0): 152-166. |
[6] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[7] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[8] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[9] | Zhiyuan Liu, Dandan Zhao, Pei Wang, Ming Yan, Can Yang, Zhangwei Chen, Jian Lu, Zhaoping Lu. Additive manufacturing of metals: Microstructure evolution and multistage control [J]. J. Mater. Sci. Technol., 2022, 100(0): 224-236. |
[10] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[11] | Xiaopeng Xiao, Dianzhong Li, Yiyi Li, Shanping Lu. Microstructural evolution and stress relaxation cracking mechanism for Super304H austenitic stainless steel weld metal [J]. J. Mater. Sci. Technol., 2022, 100(0): 82-90. |
[12] | S.L. Lu, C.J. Todaro, Y.Y. Sun, T. Sun, T. Song, M. Brandt, M. Qian. Variant selection in additively manufactured alpha-beta titanium alloys [J]. J. Mater. Sci. Technol., 2022, 113(0): 14-21. |
[13] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[14] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[15] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||