J. Mater. Sci. Technol. ›› 2022, Vol. 115: 29-39.DOI: 10.1016/j.jmst.2021.11.025
• Research Article • Previous Articles Next Articles
Junjie Wanga, Zongde Koua, Shu Fua, Shangshu Wua, Sinan Liua, Mengyang Yana, Zhiqiang Rena, Di Wangb, Zesheng Youa, Si Lana,*(), Horst Hahna,b, Xun-Li Wangc,d, Tao Fenga,*(
)
Received:
2021-10-12
Revised:
2021-11-16
Accepted:
2021-11-23
Published:
2022-01-21
Online:
2022-01-21
Contact:
Si Lan,Tao Feng
About author:
tao.feng@njust.edu.cn (T. Feng).1These authors contributed equally to the work.
Junjie Wang, Zongde Kou, Shu Fu, Shangshu Wu, Sinan Liu, Mengyang Yan, Zhiqiang Ren, Di Wang, Zesheng You, Si Lan, Horst Hahn, Xun-Li Wang, Tao Feng. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition[J]. J. Mater. Sci. Technol., 2022, 115: 29-39.
Sample | Al | Cr | Fe | Co | Ni |
---|---|---|---|---|---|
Al-30% | 31.31 | 18.22 | 17.68 | 15.84 | 17.04 |
Al-40% | 39.99 | 13.76 | 15.44 | 15.73 | 14.93 |
Al-50% | 51.33 | 12.00 | 12.52 | 12.28 | 11.88 |
Table 1. Actual composition (at.%) of designed Al/CoCrFeNi nc-HEACs.
Sample | Al | Cr | Fe | Co | Ni |
---|---|---|---|---|---|
Al-30% | 31.31 | 18.22 | 17.68 | 15.84 | 17.04 |
Al-40% | 39.99 | 13.76 | 15.44 | 15.73 | 14.93 |
Al-50% | 51.33 | 12.00 | 12.52 | 12.28 | 11.88 |
Fig. 2. Microstructure of the as-prepared 40%-Al/CoCrFeNi nc-HEAC: (a) Bright-field TEM images, the EDS analyses of (area a1) CoCrFeNi HEA nanoparticle and (area a2) irregularly Al; (b, c) HRTEM images of the CoCrFeNi HEA and the Al grain taken along [011] axes; (d) HAADF-STEM image and corresponding EDS mappings taken from the nc-HEAC; (e) Compositional profile within the HEA grain highlighted in (d) marked with the white line.
Fig. 3. (a) Vickers hardness variations of laser-IGC Al/CoCrFeNi nc-HEAC samples with different Al content after isochronous (for 1 h) heat treatment. (b) The microhardness of the nc-HEACs and other AlCoCrFeNi HEAs with different Al content. Data reported in other alloys prepared by different methods are presented for comparison.
Fig. 4. In situ synchrotron XRD patterns of the Al-40% nc-HEAC at: (a) 25-1050 °C, (c) 400-500 °C. (b) The phase fraction of FCC-Al at 25-370 °C, (d) The phase fraction of BCC and FCC at 370-800 °C.
Fig. 5. TEM images of the Al-40% nc-HEAC sample after annealing at 300 °C for 1 h. (a) Bright-field TEM image showing the nanocrystalline morphology, (inset) XRD of Al-40% nc-HEAC at room temperature and annealed at 300 °C for 1 h. (b) HRTEM image of HEA particles, (inset) fast Fourier transformation (FFT) pattern collected from the grain interior. (c) STEM image, and (area c1 and c2) the EDS analyses of the edge and center regions of HEA grain. (d) The corresponding STEM-EDS maps of the pink rectangle area in (c). (e) Compositional profiles within the HEA grain highlighted in (d) marked with the white line.
Area | Phase | Crystal structure | Al | Cr | Fe | Co | Ni |
---|---|---|---|---|---|---|---|
a1( | CoCrFeNi | FCC | 0.77 | 21.56 | 25.54 | 26.96 | 24.39 |
a2( | Al | FCC | 95.44 | 0 | 1.16 | 1.18 | 2.22 |
(c1)( | Al,Cr,Fe, Co,Ni | FCC | 16.77 | 19.62 | 22.59 | 20.11 | 20.91 |
c2( | Al,Cr,Fe, Co,Ni | FCC | 2.83 | 18.01 | 26.61 | 28.28 | 24.27 |
b1( | Al,Ni-rich phase | B2 | 24.75 | 13.59 | 21.50 | 15.87 | 24.29 |
b7( | Al,Cr,Fe, Co,Ni | FCC | 16.74 | 22.64 | 22.78 | 20.21 | 17.63 |
b1( | Al,Ni-rich phase | B2 | 31.32 | 10.80 | 11.72 | 18.69 | 27.47 |
b2( | Fe,Cr-rich phase | BCC | 12.06 | 28.49 | 28.57 | 19.07 | 11.82 |
Table 2. A summary of EDS results showing the structure and chemical compositions (at.%) of the phases formed in the Al-40% nc-HEAC sample at room temperature (RT) and after annealing at 300, 425 and 500 °C.
Area | Phase | Crystal structure | Al | Cr | Fe | Co | Ni |
---|---|---|---|---|---|---|---|
a1( | CoCrFeNi | FCC | 0.77 | 21.56 | 25.54 | 26.96 | 24.39 |
a2( | Al | FCC | 95.44 | 0 | 1.16 | 1.18 | 2.22 |
(c1)( | Al,Cr,Fe, Co,Ni | FCC | 16.77 | 19.62 | 22.59 | 20.11 | 20.91 |
c2( | Al,Cr,Fe, Co,Ni | FCC | 2.83 | 18.01 | 26.61 | 28.28 | 24.27 |
b1( | Al,Ni-rich phase | B2 | 24.75 | 13.59 | 21.50 | 15.87 | 24.29 |
b7( | Al,Cr,Fe, Co,Ni | FCC | 16.74 | 22.64 | 22.78 | 20.21 | 17.63 |
b1( | Al,Ni-rich phase | B2 | 31.32 | 10.80 | 11.72 | 18.69 | 27.47 |
b2( | Fe,Cr-rich phase | BCC | 12.06 | 28.49 | 28.57 | 19.07 | 11.82 |
Fig. 6. HRTEM images of the Al-40% nc-HEAC sample after annealing at 300 °C for 1 h. (a) HRTEM image, (inset) its corresponding FFT pattern, (a1-a3) HRTEM images of the pink rectangle regions of HEA grain taken along [011] axes in (a). (b) Lattice constants of the edge and center regions of HEA grains. (c-e) Intensity profiles along line 1 in (a1), line 2 in (a2) and line 3 in (a3), showing the interplanar spacings of (100), respectively.
Fig. 7. TEM images of the Al-40% nc-HEAC sample after annealing at 425 °C. (a) Bright-field TEM image, (b) HRTEM image, (b1-b3) the corresponding FFT patterns of BCC phase collected from the grain interior, (b4-b7) the corresponding FFT patterns of FCC phase collected from the grain interior.
Fig. 8. TEM images and corresponding FFT patterns of the Al-40% nc-HEAC sample after annealing at 500 °C for 1 h. (a) Bright-field TEM image showing the polycrystalline morphology. (b) HRTEM image of the disordered BCC and ordered BCC(B2) phase, (b1, b2) the corresponding FFT patterns collected from the grain interior and EDS chemical analysis. (c) Bright-field TEM image. (d) The corresponding STEM-EDS maps of the pink rectangle area in (c).
Fig. 9. Bright-field TEM images of the Al-40% nc-HEAC samples after 1 h isochronous heat treatment at (a) 600 °C, (b) 700 °C, (c) 800 °C, (d) 1000 °C.
Fig. 10. Microstructure of the as-cast Al40Co15Cr15Fe15Ni15 HEA: (a) EBSD inverse pole figur (IPF) image, (b) EBSD phase image. The BCC phase (red) are 100%. (c) SEM-EDS, (d) XRD.
[1] |
J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Acta Mater. 131 (2017) 206-220.
DOI URL |
[2] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Intermetallics 26 (2012) 44-51.
DOI URL |
[3] |
J. Joseph, P. Hodgson, T. Jarvis, X. Wu, N. Stanford, D.M. Fabijanic, Mater. Sci. Eng. A 733 (2018) 59-70.
DOI URL |
[4] |
T. Butler, M. Weaver, Metals 6 (2016) 222.
DOI URL |
[5] |
Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloy. Compd. 488 (2009) 57-64.
DOI URL |
[6] |
M. Li, J. Gazquez, A. Borisevich, R. Mishra, K.M. Flores, Intermetallics 95 (2018) 110-118.
DOI URL |
[7] |
W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloy. Compd. 589 (2014) 143-152.
DOI URL |
[8] |
R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, K.V. Rajulapati, Acta Mater. 125 (2017) 58-68.
DOI URL |
[9] |
V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, N.K. Mukhopadhyay, J. Alloy. Compd. 757 (2018) 87-97.
DOI URL |
[10] |
M. Vaidya, A. Prasad, A. Parakh, B.S. Murty, Mater. Des. 126 (2017) 37-46.
DOI URL |
[11] |
S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, K. Biswas, Mater. Sci. Eng. A 679 (2017) 299-313.
DOI URL |
[12] |
A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, B.S. Murty, Metall. Mater. Trans. A 46 (2014) 791-800.
DOI URL |
[13] |
A. Zhang, J. Han, J. Meng, B. Su, P. Li, Mater. Lett. 181 (2016) 82-85.
DOI URL |
[14] |
J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Scr. Mater. 187 (2020) 335-339.
DOI URL |
[15] |
A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloy. Compd. 683 (2016) 221-230.
DOI URL |
[16] |
T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan, Y. Wang, Mater. Sci. Eng. A 648 (2015) 15-22.
DOI URL |
[17] |
C. Li, J.C. Li, M. Zhao, Q. Jiang, J. Alloy. Compd. 504 (2010) S515-S518.
DOI URL |
[18] |
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, S.Y. Chang, Adv. Eng. Mater. 6 (2004) 299-303.
DOI URL |
[19] |
Y. Wang, S. Ma, X. Chen, J. Shi, Y. Zhang, J. Qiao, Acta Metall. Sin. 26 (2013) 277-284.
DOI URL |
[20] |
Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai, Mater. Lett. 151 (2015) 126-129.
DOI URL |
[21] |
P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, R.P. Liu, Mater. Sci. Eng. A 655 (2016) 283-291.
DOI URL |
[22] |
M. Komarasamy, T. Wang, K. Liu, L. Reza-Nieto, R.S. Mishra, Scr. Mater. 162 (2019) 38-43.
DOI URL |
[23] |
Y.C. Huang, C.S. Tsao, C. Lin, Y.C. Lai, S.K. Wu, C.H. Chen, Mater. Sci. Eng. A 769 (2020) 138526.
DOI URL |
[24] |
T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha, P.P. Bhattacharjee, Intermetallics 91 (2017) 150-157.
DOI URL |
[25] |
C.W. Tsai, M.H. Tsai, J.W. Yeh, C.C. Yang, J. Alloy. Compd. 490 (2010) 160-165.
DOI URL |
[26] |
J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloy. Compd. 726 (2017) 885-895.
DOI URL |
[27] |
R. Wang, K. Zhang, C. Davies, X. Wu, J. Alloy. Compd. 694 (2017) 971-981.
DOI URL |
[28] |
I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, J. Alloy. Compd. 648 (2015) 751-758.
DOI URL |
[29] | P.D. Niu, R.D. Li, T.C. Yuan, S.Y. Zhu, C. Chen, M.B. Wang, L. Huang, Inter-metallics 104 (2019) 24-32. |
[30] |
F. Ye, Z. Jiao, S. Yan, L. Guo, L. Feng, J. Yu, Vacuum 174 (2020) 109178.
DOI URL |
[31] |
Y. Liu, J. Chen, Z. Li, X. Wang, X. Fan, J. Liu, J. Alloy. Compd. 780 (2019) 558-564.
DOI URL |
[32] |
X.B. Feng, W. Fu, J.Y. Zhang, J.T. Zhao, J. Li, K. Wu, G. Liu, J. Sun, Scr. Mater. 139 (2017) 71-76.
DOI URL |
[33] |
Y.P. Cai, G.J. Wang, Y.J. Ma, Z.H. Cao, X.K. Meng, Scr. Mater. 162 (2019) 281-285.
DOI URL |
[34] |
D. Zhao, T. Yamaguchi, J. Shu, T. Tokunaga, T. Danjo, Appl. Surf. Sci. 517 (2020) 145980.
DOI URL |
[35] |
T. Yang, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[36] |
S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu, Nature 544 (2017) 460-464.
DOI URL |
[37] | L. Fan, T. Yang, Y. Zhao, J. Luan, G. Zhou, H. Wang, Z. Jiao, C.T. Liu, Nat. Com-mun. 11 (2020) 6240. |
[38] |
H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656 (2016) 39-46.
DOI URL |
[39] |
C. Yang, J. Lin, J. Zeng, S. Qu, X. Li, W. Zhang, D. Zhang, Adv. Eng. Mater. 18 (2016) 348-353.
DOI URL |
[40] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292.
DOI PMID |
[41] |
Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamza, Scr. Mater. 51 (2004) 1023-1028.
DOI URL |
[42] |
X. Huang, N. Hansen, N. Tsuji, Science 312 (2006) 249-251.
DOI URL |
[43] |
T.J. Rupert, J.R. Trelewicz, C.A. Schuh, J. Mater. Res. 27(2012)1285-1294.
DOI URL |
[44] |
C.H. Chen, Scr. Mater. 56 (2007) 713-716.
DOI URL |
[45] |
X. Yang, P. Dong, Z. Yan, B. Cheng, X. Zhai, H. Chen, H. Zhang, W. Wang, J. Alloy. Compd. 836 (2020) 155411.
DOI URL |
[46] |
Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, X. Cheng, Mater. Des. 109 (2016) 219-226.
DOI URL |
[47] |
Z. Yuan, W. Tian, F. Li, Q. Fu, Y. Hu, X. Wang, J. Alloy. Compd. 806 (2019) 901-908.
DOI URL |
[48] |
V. Shivam, Y. Shadangi, J. Basu, N.K. Mukhopadhyay, J. Alloy. Compd. 832 (2020) 154826.
DOI URL |
[49] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI PMID |
[50] |
Ł. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, F. Czerwinski, J. Alloy. Compd. 708 (2017) 344-352.
DOI URL |
[51] |
G.M. Karthik, S. Panikar, G.D.J. Ram, R.S. Kottada, Mater. Sci. Eng. A 679 (2017) 193-203.
DOI URL |
[52] |
T. Lu, W. Chen, Z. Li, T. He, B. Li, R. Li, Z. Fu, S. Scudino, J. Alloy. Compd. 801 (2019) 473-477.
DOI URL |
[53] |
T. Lu, S. Scudino, W. Chen, P. Wang, D. Li, M. Mao, L. Kang, Y. Liu, Z. Fu, Mater. Sci. Eng. A 726 (2018) 126-136.
DOI URL |
[1] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[2] | Yijing Wang, Enkang Hao, Xiaoqin Zhao, Yun Xue, Yulong An, Huidi Zhou. Effect of microstructure evolution of Ti6Al4V alloy on its cavitation erosion and corrosion resistance in artificial seawater [J]. J. Mater. Sci. Technol., 2022, 100(0): 169-181. |
[3] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[4] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[5] | Shuang Liu, Mengjie Sheng, Hao Wu, Xuetao Shi, Xiang Lu, Jinping Qu. Biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities [J]. J. Mater. Sci. Technol., 2022, 113(0): 147-157. |
[6] | S.J. Tsianikas, Y. Chen, J. Jeong, S. Zhang, Z. Xie. Forging strength-ductility unity in a high entropy steel [J]. J. Mater. Sci. Technol., 2022, 113(0): 158-165. |
[7] | Chen Chen, Yanzhou Fan, Wei Wang, Hang Zhang, Jialiang Hou, Ran Wei, Tao Zhang, Tan Wang, Mo Li, Shaokang Guan, Fushan Li. Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification [J]. J. Mater. Sci. Technol., 2022, 113(0): 253-260. |
[8] | Shuaishuai Liu, Han Liu, Xiang Chen, Guangsheng Huang, Qin Zou, Aitao Tang, Bin Jiang, Yuntian Zhu, Fusheng Pan. Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 113(0): 271-286. |
[9] | Jun Xu, Bin Jiang, Yuehua Kang, Jun Zhao, Weiwen Zhang, Kaihong Zheng, Fusheng Pan. Tailoring microstructure and texture of Mg-3Al-1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy [J]. J. Mater. Sci. Technol., 2022, 113(0): 48-60. |
[10] | Jun Wang, Yao Lu, Fanghui Jia, Wenzhen Xia, Fei Lin, Jian Han, Ruichao Wang, Zengxi Pan, Huijun Li, Zhengyi Jiang. Effects of inter-layer remelting frequency on the microstructure evolution and mechanical properties of equimolar CoCrFeNiMn high entropy alloys during in-situ powder-bed arc additive manufacturing (PBAAM) process [J]. J. Mater. Sci. Technol., 2022, 113(0): 90-104. |
[11] | Sibing Wang, Wenchen Xu, Bin Shao, Guoping Yang, Yingying Zong, Wanting Sun, Zhongze Yang, Debin Shan. Process design and microstructure-property evolution during shear spinning of Ti2AlNb-based alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 1-17. |
[12] | Wei Wu, Wanjing Zhao, Xianjing Gong, Qijun Sun, Xianwu Cao, Yujun Su, Bin Yu, Robert K.Y. Li, Roy A.L. Vellaisamy. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites [J]. J. Mater. Sci. Technol., 2022, 101(0): 107-117. |
[13] | Chenglong Hu, Rida Zhao, Sajjad Ali, Yuanhong Wang, Shengyang Pang, Jian Li, Sufang Tang. Deposition kinetics and mechanism of pyrocarbon for electromagnetic-coupling chemical vapor infiltration process [J]. J. Mater. Sci. Technol., 2022, 101(0): 118-127. |
[14] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[15] | W.T. Lin, G.M. Yeli, G. Wang, J.H. Lin, S.J. Zhao, D. Chen, S.F. Liu, F.L. Meng, Y.R. Li, F. He, Y. Lu, J.J. Kai. He-enhanced heterogeneity of radiation-induced segregation in FeNiCoCr high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 101(0): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||