J. Mater. Sci. Technol. ›› 2022, Vol. 113: 40-47.DOI: 10.1016/j.jmst.2021.09.064
• Research article • Previous Articles Next Articles
Yichen Wanga, Buhao Zhangb, Chengyu Zhangc, Jie Yinb,*(), Michael J. Reecea
Received:
2021-07-26
Revised:
2021-08-28
Accepted:
2021-09-26
Published:
2021-12-31
Online:
2022-06-24
Contact:
Jie Yin
About author:
*E-mail address: jieyin@mail.sic.ac.cn (J. Yin).Yichen Wang, Buhao Zhang, Chengyu Zhang, Jie Yin, Michael J. Reece. Ablation behaviour of (Hf-Ta-Zr-Nb)C high entropy carbide ceramic at temperatures above 2100 °C[J]. J. Mater. Sci. Technol., 2022, 113: 40-47.
Materials | Conditions of ablation test | LAR (μm s-1) | MAR (mg cm-2 s-1) | Refs. |
---|---|---|---|---|
HEC4-60 | Plasma flame, ∼2100 °C, 60 s, 1.3 MW m-2 | 8.5 ± 5 | 0.21 | This work |
HEC4-120 | Plasma flame, ∼2100 °C, 120 s, 1.3 MW m-2 | 4.8 ± 3 | 0.45 | This work |
HfC | Oxyacetylene flame, ∼2500 °C, 60 s, 2.4 MW m-2 | -0.73 | -0.031 | [ |
HfC | Oxyacetylene flame, ∼2900 °C, 180 s, | -11.0 | -0.56 | [ |
Ta0.8Hf0.2C | Plasma flame, ∼2100 °C, 90 s, 4.0 MW m-2 | -3.5 | / | [ |
ZrC-SiC coating | Plasma flame, ∼2700 °C, 300 s, 3.0 MW m-2 | 0.15 | -0.11 | [ |
Ta-Hf-C coating | Oxyacetylene flame, ∼2100 °C, 30 s, 4.2 MW m-2 | -0.94 | -0.082 | [ |
Table 1. Ablation rates (LAR and MAR) of HEC4 and a comparison for a range of carbides.
Materials | Conditions of ablation test | LAR (μm s-1) | MAR (mg cm-2 s-1) | Refs. |
---|---|---|---|---|
HEC4-60 | Plasma flame, ∼2100 °C, 60 s, 1.3 MW m-2 | 8.5 ± 5 | 0.21 | This work |
HEC4-120 | Plasma flame, ∼2100 °C, 120 s, 1.3 MW m-2 | 4.8 ± 3 | 0.45 | This work |
HfC | Oxyacetylene flame, ∼2500 °C, 60 s, 2.4 MW m-2 | -0.73 | -0.031 | [ |
HfC | Oxyacetylene flame, ∼2900 °C, 180 s, | -11.0 | -0.56 | [ |
Ta0.8Hf0.2C | Plasma flame, ∼2100 °C, 90 s, 4.0 MW m-2 | -3.5 | / | [ |
ZrC-SiC coating | Plasma flame, ∼2700 °C, 300 s, 3.0 MW m-2 | 0.15 | -0.11 | [ |
Ta-Hf-C coating | Oxyacetylene flame, ∼2100 °C, 30 s, 4.2 MW m-2 | -0.94 | -0.082 | [ |
Symbol | Indicated phase | PDF number | Possible alternate oxides |
---|---|---|---|
♣ | TaZr2.75O8 | 42-0060 | (Nb, Ta)(Zr, Hf)2.75O8 [ |
♦ | Nb2Zr6O17 | 09-0251 | (Nb, Ta)2(Zr, Hf)6O17 [ |
♥ | Ta2O5 | 21-1198 | (Nb, Ta)2O5 [ |
♠ | HfO2 | 43-1017 | (Zr, Hf)O2 [ |
Table 2. Possible alternate phase matches for the XRD results in Fig. 3.
Symbol | Indicated phase | PDF number | Possible alternate oxides |
---|---|---|---|
♣ | TaZr2.75O8 | 42-0060 | (Nb, Ta)(Zr, Hf)2.75O8 [ |
♦ | Nb2Zr6O17 | 09-0251 | (Nb, Ta)2(Zr, Hf)6O17 [ |
♥ | Ta2O5 | 21-1198 | (Nb, Ta)2O5 [ |
♠ | HfO2 | 43-1017 | (Zr, Hf)O2 [ |
Fig. 6. SEM images of the cross section of the centre of (a) HEC4-60 and (b) HEC4-120; (c) and (d) are the corresponding EDS results of the red rectangles in (a) and (b), respectively. The front surface of the samples is at the top of all of the images.
Fig. 7. BSE images and EDS results from a cross section of the centre of the ablated specimens: (a) HEC4-60; (b) HEC4-120; (c) EDS results of points in (a and b); and (d) EDS results of points though the oxide layer of HEC4-120 in (b). The front surface of the samples is at the top of all of the images.
Fig. 8. (a) BSE image of the cross section of the edge of HEC4-120; (b) BSE image of the red square in the near surface layer in (a); (c) EDS results of points in (a) and (b). The front surface of the samples is at the top of all of the images.
[1] |
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-.P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 9 (2018) 4980.
DOI URL |
[2] |
E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 8 (2018) 8609.
DOI URL |
[3] |
F.Z. Dai, B. Wen, B. Gao, Q. Zou, Y. Sun, Q. Yang, D. Tian, H. Xian, Y. Zhou, J. Mater. Sci. Technol. 43 (2020) 168-174.
DOI URL |
[4] |
H. Xiang, Y. Xing, F.Z. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, J. Adv. Ceram. 10 (2021) 385-441.
DOI URL |
[5] |
B. Ye, T. Wen, K. Huang, C.Z. Wang, Y. Chu, J. Am. Ceram. Soc. 102 (2019) 4344-4352.
DOI URL |
[6] |
D. Liu, A. Zhang, J. Jia, J. Meng, B. Su, J. Eur. Ceram. Soc. 40 (2020) 2746-2751.
DOI URL |
[7] |
K. Wang, L. Chen, C. Xu, W. Zhang, Z. Liu, Y. Wang, J. Ouyang, X. Zhang, Y. Fu, Y. Zhou, J. Mater. Sci. Technol. 39 (2020) 99-105.
DOI |
[8] |
B. Ye, T. Wen, M.C. Nguyen, L. Hao, C.Z. Wang, Y. Chu, Acta Mater. 170 (2019) 15-23.
DOI URL |
[9] | K. Kaufmann, D. Maryanovsky, W.M. Mellor, C. Zhu, A.S. Rosengarten, T.J. Har-rington, C. Oses, C. Toher, S. Curtarolo, K.S. Vecchio, Npj Comput\. Mater. 6 (2020) 42. |
[10] |
Y. Wang, T. Csanadi, H. Zhang, J. Dusza, M.J. Reece, R.Z. Zhang, Adv. Theory Simul. 3 (2020) 2000111.
DOI URL |
[11] |
Y. Sun, F. Chen, W. Qiu, L. Ye, W. Han, W. Zhao, H. Zhou, T. Zhao, J. Am. Ceram. Soc. 103 (2020) 6081-6087.
DOI URL |
[12] |
X. Yan, L. Constantin, Y. Lu, J.F. Silvain, M. Nastasi, B. Cui, J. Am. Ceram. Soc. 101 (2018) 4486-4491.
DOI URL |
[13] |
H. Chen, H. Xiang, F.Z. Dai, J. Liu, Y. Lei, J. Zhang, Y. Zhou, J. Mater. Sci. Technol. 35 (2019) 1700-1705.
DOI |
[14] |
T.J. Harrington, J. Gild, P. Sarker, C. Toher, C.M. Rost, O.F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, Acta Mater. 166 (2019) 271-280.
DOI |
[15] |
T. Csanadi, E. Castle, M.J. Reece, J. Dusza, Sci. Rep. 9 (2019) 10200.
DOI URL |
[16] |
L. Feng, W.T. Chen, W.G. Fahrenholtz, G.E. Hilmas, J. Am. Ceram. Soc. 104 (2021) 419-427.
DOI URL |
[17] |
X. Han, V. Girman, R. Sedlak, J. Dusza, E.G. Castle, Y. Wang, M. Reece, C. Zhang, J. Eur. Ceram. Soc. 40 (2019) 2709-2715.
DOI URL |
[18] | J.F. Justin, A. Jankowiak, Ultra High Temperature Ceramics: Densification, Prop- erties and Thermal Stability (2011) 1-11. |
[19] | M.J. Gasch, D.T. Ellerby, S.M. Johnson, Ultra High Temperature Ceramic Com- posites, in: N.P. Bansal (Ed.), Handbook of Ceramic Composites, Springer US, Boston, MA, 2005, pp. 197-224. |
[20] |
B. Ye, T. Wen, D. Liu, Y. Chu, Corros. Sci. 153 (2019) 327-332.
DOI URL |
[21] |
Y. Wang, R.Z. Zhang, B. Zhang, O. Skurikhina, P. Balaz, V. Araullo-Peters, M. J. Reece, Corros. Sci. 176 (2020) 109019.
DOI URL |
[22] |
B. Ye, T. Wen, Y. Chu, J. Am. Ceram. Soc. 103 (2020) 500-507.
DOI URL |
[23] |
L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197 (2020) 81-90.
DOI URL |
[24] |
Y. Tan, C. Chen, S. Li, X. Han, J. Xue, T. Liu, X. Zhou, H. Zhang, J. Alloys Compd. 816 (2020) 152523.
DOI URL |
[25] |
L. Backman, J. Gild, J. Luo, E.J. Opila, Acta Mater. 197 (2020) 20-27.
DOI URL |
[26] |
Y. Wang, M.J. Reece, Scr. Mater. 193 (2021) 86-90.
DOI URL |
[27] |
J. Dusza, P. Švec, V. Girman, R. Sedlák, E.G. Castle, T. Csanádi, A. Koval číková, M. J. Reece, J. Eur. Ceram. Soc. 38 (2018) 4303-4307.
DOI URL |
[28] | Z. Peng, W. Sun, X. Xiong, Y. Xu, Z. Zhou, Z. Zhan, H. Zhang, Y. Zeng, Corros. Sci. (2021) 109623. |
[29] |
Z.Y. Tan, W. Zhu, L. Yang, Y.C. Zhou, Q. Wu, L.J. Gong, Surf. Coat. Tech. 403 (2020) 126405.
DOI URL |
[30] |
N. Ni, W. Hao, T. Liu, L. Zhou, F. Guo, X. Zhao, P. Xiao, Ceram. Int. 46 (2020) 23840-23853.
DOI URL |
[31] |
B. Zhang, J. Yin, J. Zheng, X. Liu, Z. Huang, J. Dusza, D. Jiang, J. Eur. Ceram. Soc. 40 (2020) 1784-1789.
DOI URL |
[32] |
T. Liu, Y. Niu, C. Li, X. Pan, M. Shi, X. Zheng, C. Ding, Corros. Sci. 145 (2018) 239-248.
DOI URL |
[33] |
L. Pienti, D. Sciti, L. Silvestroni, A. Cecere, R. Savino, J. Eur. Ceram. Soc. 35 (2015) 1401-1411.
DOI URL |
[34] |
J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, J. Eur. Ceram. Soc. 38 (2018) 3578-3584.
DOI URL |
[35] |
F. Li, L. Zhou, J.X. Liu, Y. Liang, G.J. Zhang, J. Adv. Ceram. 8 (2019) 576-582.
DOI URL |
[36] | G.V. Samsonov, in: G.V. Samsonov (Ed.), The Oxide Handbook, Springer US, Boston, MA, 1973, pp. 36-223. |
[37] |
G. Hautier, C. Fischer, V. Ehrlacher, A. Jain, G. Ceder, Inorg. Chem. 50 (2011) 656-663.
DOI URL |
[38] |
S.J. McCormack, W.M. Kriven, Acta Crystallogr. B 75 (2019) 227-234.
DOI PMID |
[39] |
H. Wang, S. Wang, Y. Cao, W. Liu, Y. Wang, J. Mater. Sci. Technol. 60 (2021) 147-155.
DOI URL |
[40] |
J. Tang, F. Zhang, P. Zoogman, J. Fabbri, S.W. Chan, Y. Zhu, L.E. Brus, M.L. Steiger- wald, Adv. Funct. Mater. 15 (2005) 1595-1602.
DOI URL |
[41] |
C. Gasparrini, R.J. Chater, D. Horlait, L. Vandeperre, W.E. Lee, J. Am. Ceram. Soc. 101 (2018) 2638-2652.
DOI URL |
[42] |
C. Zhang, B. Boesl, A. Agarwal, Ceram. Int. 43 (2017) 14798-14806.
DOI URL |
[43] |
L. Zhao, D. Jia, X. Duan, Z. Yang, Y. Zhou, J. Eur. Ceram. Soc. 32 (2012) 947-954.
DOI URL |
[44] |
H. Wang, Y. Cao, W. Liu, Y. Wang, Ceram. Int. 46 (2020) 11160-11168.
DOI URL |
[45] |
J. Yuan, W. Song, H. Zhang, X. Zhou, S. Dong, J. Jiang, L. Deng, X. Cao, Mater. Lett. 247 (2019) 82-85.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||