J. Mater. Sci. Technol. ›› 2022, Vol. 112: 263-276.DOI: 10.1016/j.jmst.2021.07.061
• Research Article • Previous Articles Next Articles
Suyun Liua,b, Xuewan Wanga, Qi Yina,b, Xiongzhi Xianga, Xian-Zhu Fua, Xian-Zong Wangc,*(), Jing-Li Luoa,*(
)
Received:
2021-05-24
Revised:
2021-07-06
Accepted:
2021-07-07
Published:
2021-12-26
Online:
2021-12-26
Contact:
Xian-Zong Wang,Jing-Li Luo
About author:
jingli.luo@ualberta.ca (J.-L. Luo).Suyun Liu, Xuewan Wang, Qi Yin, Xiongzhi Xiang, Xian-Zhu Fu, Xian-Zong Wang, Jing-Li Luo. A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor[J]. J. Mater. Sci. Technol., 2022, 112: 263-276.
Fig. 1. Visual and schematic illustration of the electrochemical-exfoliation of graphene CTAB and SDS solution: (a) the color changes of SDS solution during electrochemical-exfoliation process and the obtained homogeneous G/SDS dispersion solution after ultrasound treatment, (b) electrochemical cell, (c) schematic diagram of the formation process of graphene nanosheets in surfactant-containing solution during electrochemical-exfoliation.
Fig. 2. (a) Tailored and (b) SEM images of GP, SEM images of the freeze-dried (c) C-G and (d) S-G nanosheets; AFM images and the corresponding heights of the (e, g) C-G and (f, h) S-G nanosheets.
Fig. 5. (a) Visual illustration of the dispersion stabilities of G/CTAB and G/SDS dispersion solution after 360 h standing time. The stereomicroscope morphologies of (b) WEP, (c) C-G/WEP and (d) S-G/WEP coatings.
Fig. 8. Nyquist plots of (a) WEP, (c) C-G/WEP, (d) S-G/WEP coatings in a 3.5 wt.% NaCl solution at 1 h to 72 h immersion time and (b) the corresponding equivalent circuit model.
Coatings | Immersion time | ||
---|---|---|---|
1 h | 24 h | 72 h | |
WEP coatings | 6.89 × 109 | 4.72 × 108 | 3.52 × 108 |
C-G/WEP coatings | 1.97 × 1010 | 4.38 × 109 | 1.63 × 109 |
S-G/WEP coatings | 1.56 × 1010 | 3.18 × 109 | 1.36 × 109 |
Table 1. The average Rc values (Ω cm2) obtained from the EIS fitting results in 3.5 wt.% NaCl during different immersion time.
Coatings | Immersion time | ||
---|---|---|---|
1 h | 24 h | 72 h | |
WEP coatings | 6.89 × 109 | 4.72 × 108 | 3.52 × 108 |
C-G/WEP coatings | 1.97 × 1010 | 4.38 × 109 | 1.63 × 109 |
S-G/WEP coatings | 1.56 × 1010 | 3.18 × 109 | 1.36 × 109 |
Fig. 10. (a) The obtained Rct values as a function of immersion time (with the corresponding equivalent circuit model inset), (a1) partial enlargement of (a), (b) the evolution of |Z|0.01 Hz, (c) OCP with immersion time in 3.5 wt.% NaCl solution for the coated Q235 steel steels.
Fig. 11. SEM images and element total spectra of the underlying steel beneath (a) WEP coatings after 360 h immersion in 3.5 wt.% NaCl solution, (b) C-G/WEP and (c) S-G/WEP coatings after 720 h immersion, (d) the corresponding chemical composition of the underlying metal.
Fig. 13. Visual performances of (a, b) WEP, (c, d) C-G/WEP, (e, f) S-G/WEP coatings before (a, c, e) and after (b, d, f) 168 h exposed to salt spray test (sodium chloride concentration: 5 wt.%, temperature: 35 °C, the scratch with size of 4 cm in length is produced by a sharp blade.
Coatings | Graphene preparation | Modification methods | Coatings’ preparation | Log|Z| growth | Refs. |
---|---|---|---|---|---|
C-G/WEPS-G/WEP | Electro-exfoliation | None | Dialyze and add into coatings | 6.5-9.3 (720 h) | This work |
Lignin-OH/G/WEP | Ultrasonic stripping | Synthesize lignin-OH, and lignin-OH/G | Filtration, wash, re-disperse in the coatings | 2.9-4.1 (144 h) | [ |
Polydopamine-GO/WEP | Commercial | Synthesize polydopamine-GO | Wash, dry and disperse in the coatings | 6.3-7.1 (960 h) | [ |
Ammonium-GO/WEP | Hummers’ | Modify GO with silane, and synthesize ammonium-GO | Wash, dry and redisperse in the coatings | 6.1-7.5 (960 h) | [ |
PA/GO/WEP | Commercial | Modify GO with phytic acid (PA/GO) | Centrifuge, wash and disperse PA/GO in the coatings | 4.8-7.4 (840 h) | [ |
Lysine/GO/WEP | Commercial | Synthesize Lysine/GO | Centrifuge, wash Lysine/GO and disperse in the coatings | 5.2-6.8 (1272 h) | [ |
G-GO/WEP | Hummers’ | Blend G and GO | Disperse in the coatings | 4.9-6.0 (720 h) | [ |
G-TA/WEP | Commercial | Synthesize G-TA with TA and KH560 | Centrifugation and disperse in the coatings | 5.4-8.8 (720 h) | [ |
PPy-GO/WEP | Hummers’ | Wash and dry GO, synthesize PPy-GO | Wash, dry and disperse PPy-GO with Zn3(PO4)2 to prepare coatings | 4.3-4.5 (240 h) | [ |
HTMoO4/GO/WEP | Hummers’ | SynthesizeHT-MoO4/GO | Wash, dry and re-disperse in the coatings | 2.2-3.7 (240 h) | [ |
G/V2O5@PANI/WEP | Oxidation-reduction | Synthesize V2O5@PANI, and G/V2O5@PANI | Disperse G/V2O5@PANI in the coatings | 6.4-8.2 (336 h) | [ |
PGO/WEP | Commercial | Modify GO with KH580, and synthesize PGO | Wash, dry and redisperse PGO in the coatings | 6.1-7.2 (960 h) | [ |
SGO/WEP | Commercial | Modify GO by KH560, and treat with microwave | Centrifuge, wash and redisperse SGO in the coatings | 6.3-9.5 (2160 h) | [ |
MGO/WEP | Hummers | Modify GO with silane coupling agent to obtain MGO | Wash, dry and disperse in the coatings | 2.7-4.1 (720 h) | [ |
Table 2. Comparison of graphene synthesis, modification methods and anticorrosion performance by our method and the graphene WEP coatings reported in literature.
Coatings | Graphene preparation | Modification methods | Coatings’ preparation | Log|Z| growth | Refs. |
---|---|---|---|---|---|
C-G/WEPS-G/WEP | Electro-exfoliation | None | Dialyze and add into coatings | 6.5-9.3 (720 h) | This work |
Lignin-OH/G/WEP | Ultrasonic stripping | Synthesize lignin-OH, and lignin-OH/G | Filtration, wash, re-disperse in the coatings | 2.9-4.1 (144 h) | [ |
Polydopamine-GO/WEP | Commercial | Synthesize polydopamine-GO | Wash, dry and disperse in the coatings | 6.3-7.1 (960 h) | [ |
Ammonium-GO/WEP | Hummers’ | Modify GO with silane, and synthesize ammonium-GO | Wash, dry and redisperse in the coatings | 6.1-7.5 (960 h) | [ |
PA/GO/WEP | Commercial | Modify GO with phytic acid (PA/GO) | Centrifuge, wash and disperse PA/GO in the coatings | 4.8-7.4 (840 h) | [ |
Lysine/GO/WEP | Commercial | Synthesize Lysine/GO | Centrifuge, wash Lysine/GO and disperse in the coatings | 5.2-6.8 (1272 h) | [ |
G-GO/WEP | Hummers’ | Blend G and GO | Disperse in the coatings | 4.9-6.0 (720 h) | [ |
G-TA/WEP | Commercial | Synthesize G-TA with TA and KH560 | Centrifugation and disperse in the coatings | 5.4-8.8 (720 h) | [ |
PPy-GO/WEP | Hummers’ | Wash and dry GO, synthesize PPy-GO | Wash, dry and disperse PPy-GO with Zn3(PO4)2 to prepare coatings | 4.3-4.5 (240 h) | [ |
HTMoO4/GO/WEP | Hummers’ | SynthesizeHT-MoO4/GO | Wash, dry and re-disperse in the coatings | 2.2-3.7 (240 h) | [ |
G/V2O5@PANI/WEP | Oxidation-reduction | Synthesize V2O5@PANI, and G/V2O5@PANI | Disperse G/V2O5@PANI in the coatings | 6.4-8.2 (336 h) | [ |
PGO/WEP | Commercial | Modify GO with KH580, and synthesize PGO | Wash, dry and redisperse PGO in the coatings | 6.1-7.2 (960 h) | [ |
SGO/WEP | Commercial | Modify GO by KH560, and treat with microwave | Centrifuge, wash and redisperse SGO in the coatings | 6.3-9.5 (2160 h) | [ |
MGO/WEP | Hummers | Modify GO with silane coupling agent to obtain MGO | Wash, dry and disperse in the coatings | 2.7-4.1 (720 h) | [ |
Fig. 15. Comparison of the log|Z| improvement by our method and the reported graphene/WEP coatings reported in the literature. The number in the circle is the Ref. No.
[1] |
B. Zhang, J. Duan, Y. Huang, B. Hou, J. Mater. Sci. Technol. 71 (2021) 1-11.
DOI URL |
[2] |
F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li, Corros. Sci. 144 (2018) 74-88.
DOI URL |
[3] | A. Nautiyal, M. Qiao, T. Ren, T. Huang, X. Zhang, J. Cook, M.J. Bozack, R. Farag, Eng. Sci. 4 (2018) 70-78. |
[4] |
H. Du, X. Ren, D. Pan, Y. An, Y. Wei, X. Liu, L. Hou, B. Liu, M. Liu, Z. Guo, Adv. Compos. Hybrid Mater. 4 (2021) 401-414.
DOI URL |
[5] | J. Liu, J. Zhang, J. Tang, L. Pu, Y. Xue, M. Lu, L. Xu, Z. Guo, ES Mater. Manuf. 10 (2020) 29-38. |
[6] |
A.M. Madhusudhana, K.N.S. Mohana, M.B. Hegde, S.R. Nayak, K. Rajitha, N.K. Swamy, Adv. Compos. Hybrid Mater. 3 (2020) 141-155.
DOI URL |
[7] |
M. Zhang, M. Dong, S. Chen, Z. Guo, Eng. Sci. 3 (2018) 67-76.
DOI URL |
[8] | Q. Zhu, J. Liu, X. Wang, Y. Huang, Y. Ren, W. Song, C. Mu, X. Liu, F. Wei, C. Liu, ES Mater. Manuf. 9 (2020) 48-54. |
[9] |
S. Wang, Z. Hu, J. Shi, G. Chen, Q. Zhang, Z. Weng, K. Wu, M. Lu, Appl. Surf. Sci. 484 (2019) 759-770.
DOI URL |
[10] | Y. He, Q. Chen, S. Yang, C. Lu, M. Feng, Y. Jiang, G. Cao, J. Zhang, C. Liu, Compos. Part A Appl. Sci. Maunf 108 (2018) 12-22. |
[11] |
D. Pan, Q. Li, W. Zhang, J. Dong, F. Su, V. Murugadoss, Y. Liu, C. Liu, N. Naik, Z. Guo, Compos. Part B Eng. 209 (2021) 108609.
DOI URL |
[12] |
L. Shi, G. Song, P. Li, X. Li, D. Pan, Y. Huang, L. Ma, Z. Guo, Compos. Sci. Technol. 201 (2021) 108522.
DOI URL |
[13] | H. Kang, Q. Shao, X. Guo, A. Galaska, Y. Liu, Z. Guo, Eng. Sci. 1 (2018) 78-85. |
[14] |
Y. Ye, H. Chen, Y. Zou, H. Zhao, J. Mater. Sci. Technol. 67 (2021) 226-236.
DOI URL |
[15] |
R.B. Ashok, C.V. Srinivasa, B. Basavaraju, Adv. Compos. Hybrid Mater. 3 (2020) 365-374.
DOI URL |
[16] | J. Li, P. Zhang, H. He, S. Zhai, Y. Xian, W. Ma, L. Wang, ES Energy Environ. 4 (2019) 41-47. |
[17] | K. Shi, Y. Shen, Y. Zhang, T. Wang, Eng. Sci. 5 (2019) 66-72. |
[18] | X. Jing, J. Wei, Y. Liu, B. Song, Y. Liu, Eng. Sci. 11 (2020) 44-53. |
[19] |
U.S. Gupta, M. Dhamarikar, A. Dharkar, S. Tiwari, R. Namdeo, Adv. Compos. Hybrid Mater. 3 (2020) 530-540.
DOI URL |
[20] |
M. Cui, S. Ren, H. Zhao, Q. Xue, L. Wang, Chem. Eng. J. 335 (2018) 255-266.
DOI URL |
[21] |
S. Liu, L. Gu, H. Zhao, J. Chen, H. Yu, J. Mater. Sci. Technol. 32 (2016) 425-431.
DOI URL |
[22] |
H. Gu, C. Ma, J. Gu, J. Guo, X. Yan, J. Huang, Q. Zhang, Z. Guo, J. Mater. Chem. C 4 (2016) 5890-5906.
DOI URL |
[23] |
H. Yan, M. Cai, W. Li, X. Fan, M. Zhu, J. Mater. Sci. Technol. 54 (2020) 144-159.
DOI URL |
[24] |
J. Wang, Y. Liu, Z. Fan, W. Wang, B. Wang, Z. Guo, Adv. Compos. Hybrid Mater. 2 (2019) 1-33.
DOI URL |
[25] | Y. Chen, Z. Guo, R. Das, Q. Jiang, ES Food Agrofor. 2 (2020) 12-21. |
[26] |
L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52 (2020) 119-126.
DOI |
[27] |
I. Bustero, I. Gaztelumendi, I. Obieta, M.A. Mendizabal, A. Zurutuza, A. Ortega, B. Alonso, Adv. Compos. Hybrid Mater. 3 (2020) 31-40.
DOI URL |
[28] | H. Yang, Q. Li, Z. Wang, H. Wu, Y. Wu, P. Hou, X. Cheng, E.S. Mater. Manuf. 12 (2021) 29-34. |
[29] | H. Liu, Y. Mao, E.S. Mater. Manuf. 13 (2021) 3-22. |
[30] | J. Gu, J. She, Y. Yue, ES Energy Environ. 9 (2020) 15-27. |
[31] | N. Nidamanuri, Y. Li, Q. Li, M. Dong, Eng. Sci. 9 (2020) 3-16. |
[32] | Y. Zhou, P. Wang, G. Ruan, P. Xu, Y. Ding, ES Mater. Manuf. 11 (2021) 20-29. |
[33] |
G. Cui, Z. Bi, R. Zhang, J. Liu, X. Yu, Z. Li, Chem. Eng. J. 373 (2019) 104-121.
DOI URL |
[34] |
R. Ding, S. Chen, J. Lv, W. Zhang, X. Zhao, J. Liu, X. Wang, T. Gui, B. Li, Y. Tang, W. Li, J. Alloy. Compd. 806 (2019) 611-635.
DOI |
[35] | Y. Wu, W. Zhao, Y. Qiang, Z. Chen, L. Wang, X. Gao, Z. Fang, Carbon 159 (2020) 292-302. |
[36] | Y. Ye, D. Yang, D. Zhang, H. Chen, H. Zhao, X. Li, L. Wang, Chem. Eng. J. 383 (2020) 13. |
[37] |
F. Jiang, W. Zhao, Y. Wu, Y. Wu, G. Liu, J. Dong, K. Zhou, Appl. Surf. Sci. 479 (2019) 963-973.
DOI URL |
[38] |
M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, ACS Nano 7 (2013) 5763-5768.
DOI PMID |
[39] |
J. Ding, H. Zhao, D. Ji, B. Xu, X. Zhao, Z. Wang, D. Wang, Q. Zhou, H. Yu, J. Mater. Chem. A 7 (2019) 2864-2874.
DOI URL |
[40] | W. Sun, T. Wu, L. Wang, Z. Yang, T. Zhu, C. Dong, G. Liu, Compos. Part B Eng. 173 (2019) 8. |
[41] | B. Xue, M. Yu, J. Liu, S. Li, L. Xiong, X. Kong, J. Electrochem. Soc. 163 (2016) C798-C806. |
[42] |
M. Behzadnasab, S.M. Mirabedini, K. Kabiri, S. Jamali, Corros. Sci. 53 (2011) 89-98.
DOI URL |
[43] |
W. Li, T. Shang, W. Yang, H. Yang, S. Lin, X. Jia, Q. Cai, X. Yang, ACS Appl. Mater. Interfaces 8 (2016) 13037-13050.
DOI URL |
[44] | Z. Zhao, L. Guo, L. Feng, H. Lu, Y. Xua, J. Wang, B. Xiang, X. Zou, Eur. Polym. J. 120 (2019) 13. |
[45] |
Y. Tian, Y. Xie, F. Dai, H. Huang, L. Zhong, X. Zhang, Surf. Coat. Technol. 383 (2020) 125227.
DOI URL |
[46] | X. Zhou, H. Huang, R. Zhu, R. Chen, X. Sheng, D. Xie, Y. Mei, Prog. Org. Coat. 143 (2020) 105601. |
[47] |
R. Mohammadkhani, M. Ramezanzadeh, S. Saadatmandi, B. Ramezanzadeh, Chem. Eng. J. 382 (2020) 122819.
DOI URL |
[48] | S. Amrollahi, B. Ramezanzadeh, H. Yari, M. Ramezanzadeh, M. Mandavian, Compos. Part B Eng. 173 (2019) 14. |
[49] | W. Zheng, W. Chen, T. Feng, W. Li, X. Liu, L. Dong, Y. Fu, Prog. Org. Coat. 138 (2020) 9. |
[50] |
X. Xing, X. Xu, J. Wang, W. Hu, Appl. Surf. Sci. 479 (2019) 835-846.
DOI URL |
[51] |
S. Pei, Q. Wei, K. Huang, H. Cheng, W. Ren, Nat. Commun. 9 (2018) 145.
DOI URL |
[52] |
W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339.
DOI URL |
[53] |
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J.M. Tour, ACS Nano 4 (2010) 4806-4814.
DOI URL |
[54] |
K. Kakaei, K. Hasanpour, J. Mater. Chem. A 2 (2014) 15428-15436.
DOI URL |
[55] |
M. Yusuf, M.A. Khan, M. Otero, E.C. Abdullah, M. Hosomi, A. Terada, S. Riya, J. Colloid Interface Sci. 493 (2017) 51-61.
DOI URL |
[56] |
F. Arjmand, J. Wang, L. Zhang, J. Mater. Eng. Perform. 25 (2016) 809-819.
DOI URL |
[57] |
S. Javadian, A. Yousefi, J. Neshati, Appl. Surf. Sci. 285 (2013) 674-681.
DOI URL |
[58] | ISO 2808-2007, Paints and varnishes Determination of film thickness, International Standard, 2007. |
[59] |
S. Liu, L. Liu, Y. Li, F. Wang, J. Mater. Sci. Technol. 39 (2020) 48-55.
DOI URL |
[60] |
S. Daradmare, S. Raj, A.R. Bhattacharyya, S. Parida, Compos. Part B Eng. 155 (2018) 1-10.
DOI URL |
[61] |
K. Parvez, Z. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muellen, J. Am. Chem. Soc. 136 (2014) 6083-6091.
DOI URL |
[62] |
S. Pei, H. Cheng, Carbon N Y 50 (2012) 3210-3228.
DOI URL |
[63] |
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97 (2006) 187401.
DOI URL |
[64] | J. Pellessier, Y. Gang, Y. Li, ES Mater. Manuf. 13 (2021) 66-75. |
[65] |
S. Qiu, W. Li, W. Zheng, H. Zhao, L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 34294-34304.
DOI URL |
[66] |
Y. Wang, Z. Gu, J. Liu, J. Jiang, N. Yuan, J. Pu, J. Ding, Surf. Coat. Technol. 360 (2019) 276-284.
DOI URL |
[67] |
F. Meng, L. Liu, Y. Cui, F. Wang, J. Mater. Sci. Technol. 64 (2021) 165-175.
DOI URL |
[68] |
S. Liu, L. Liu, H. Guo, E.E. Oguzie, Y. Li, F. Wang, Electrochem. Commun. 98 (2019) 110-114.
DOI URL |
[69] |
G. Gupta, N. Birbilis, A.B. Cook, A.S. Khanna, Corros. Sci. 67 (2013) 256-267.
DOI URL |
[70] | X. Zhou, H. Huang, R. Zhu, X. Sheng, D. Xie, Y. Mei, Prog. Org. Coat. 136 (2019) 105200. |
[71] |
F. Zhong, Y. He, P. Wang, C. Chen, Y. Lin, Y. Wu, J. Chen, Appl. Surf. Sci. 488 (2019) 801-812.
DOI |
[72] |
Y. He, C. Chen, G. Xiao, F. Zhong, Y. Wu, Z. He, React. Funct. Polym. 137 (2019) 104-115.
DOI URL |
[73] |
Q. Zhu, E. Li, X. Liu, W. Song, M. Zhao, L. Zi, X. Wang, C. Liu, Compos. Part A Appl. Sci. Manuf. 130 (2020) 105752.
DOI URL |
[74] |
N. Thuy Duong, N. Anh Son, T. Boi An, V. Ke Oanh, T. Dai Lam, P. Thanh Thao, N. Scharnagl, M.L. Zheludkevich, T. Thi Xuan Hang, Surf. Coat. Technol. 399 (2020) 126165.
DOI URL |
[75] | F. Zhong, Y. He, P. Wang, C. Chen, H. Yu, H. Li, J. Chen, React. Funct. Polym. 151 (2020) 13. |
[76] | H. Huang, Y. Tian, Y. Xie, R. Mo, J. Hu, M. Li, X. Sheng, X. Jiang, X. Zhang, Prog. Org. Coat. 146 (2020) 105724. |
[77] |
J. Cui, W. Shan, J. Xu, H. Qiu, J. Li, J. Yang, Compos. Sci. Technol. 200 (2020) 108438.
DOI URL |
[78] | H. Li, C. Xue, L. Gao, X. Wang, H. Wei, H. Nan, G. Wang, H. Lin, Prog. Org. Coat. 150 (2021) 105974. |
[1] | Mohammed Arroussi, Qing Jia, Chunguang Bai, Shuyuan Zhang, Jinlong Zhao, Zhizhou Xia, Zhiqiang Zhang, Ke Yang, Rui Yang. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109(0): 282-296. |
[2] | Yiqian Lv, Yueqing Zheng, Honglin Zhu, Yinghao Wu. Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring [J]. J. Mater. Sci. Technol., 2022, 106(0): 56-69. |
[3] | Xiaofan Zhai, Peng Ju, Fang Guan, Jizhou Duan, Nan Wang, Yimeng Zhang, Ke Li, Baorong Hou. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria [J]. J. Mater. Sci. Technol., 2021, 75(0): 86-95. |
[4] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[5] | Na Guo, Yanan Wang, Xinrui Hui, Qianyu Zhao, Zhenshun Zeng, Shuai Pan, Zhangwei Guo, Yansheng Yin, Tao Liu. Marine bacteria inhibit corrosion of steel via synergistic biomineralization [J]. J. Mater. Sci. Technol., 2021, 66(0): 82-90. |
[6] | Guoqing Chen, Qianxing Yin, Jian Cao, Ge Zhang, Gongbo Zhen, Binggang Zhang. Electron beam surface heating-diffusion bonding: An effective joining method for aluminum alloy metal-matrix composite with high SiC volume [J]. J. Mater. Sci. Technol., 2021, 88(0): 109-118. |
[7] | Liang Wu, Xingxing Ding, Zhicheng Zheng, Aitao Tang, Gen Zhang, Andrej Atrens, Fusheng Pan. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64(0): 66-72. |
[8] | Yujie Qiang, Hao Li, Xijian Lan. Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment [J]. J. Mater. Sci. Technol., 2020, 52(0): 63-71. |
[9] | Yuecun Wang, Meng Li, Yueqing Yang, Xin’ai Zhao, Evan Ma, Zhiwei Shan. In-situ surface transformation of magnesium to protect against oxidation at elevated temperatures [J]. J. Mater. Sci. Technol., 2020, 44(0): 48-53. |
[10] | Inime Ime Udoh, Hongwei Shi, Mohammad Soleymanibrojeni, Fuchun Liu, En-Hou Han. Inhibition of galvanic corrosion in Al/Cu coupling model by synergistic combination of 3-Amino-1,2,4-triazole-5-thiol and cerium chloride [J]. J. Mater. Sci. Technol., 2020, 44(0): 102-115. |
[11] | Lu Shen, Yong Li, Wenjie Zhao, Kui Wang, Xiaojing Ci, Yangmin Wu, Gang Liu, Chao Liu, Zhiwen Fang. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating [J]. J. Mater. Sci. Technol., 2020, 44(0): 121-132. |
[12] | Xie Bei, Yi Jipeng, Peng Jian, Zhang Xing, Lei Lei, Zhao Dapeng, Lei Zhixin, Nie Hemin. Characterization of synergistic anti-tumor effects of doxorubicin and p53 via graphene oxide-polyethyleneimine nanocarriers [J]. J. Mater. Sci. Technol., 2017, 33(8): 807-814. |
[13] | Shao Wenting, Zhang Xinyu, Jiang Bailing, Liu Cancan, Li Hongtao. Spontaneous escape behavior of silver from graphite-like carbon coating and its inhibition mechanism [J]. J. Mater. Sci. Technol., 2017, 33(11): 1402-1408. |
[14] | B.V. Appa Rao, K. Chaitanya Kumar. Effect of Hydrodynamic Conditions on Corrosion Inhibition of Cu–Ni (90/10) Alloy in Seawater and Sulphide Containing Seawater Using 1,2,3-Benzotriazole [J]. J. Mater. Sci. Technol., 2014, 30(1): 65-76. |
[15] | Jian Hou, Guang Zhu, Jingkun Xu, Huajian Liu. Anticorrosion Performance of Epoxy Coatings Containing Small Amount of Inherently Conducting PEDOT/PSS on Hull Steel in Seawater [J]. J. Mater. Sci. Technol., 2013, 29(7): 678-684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||