J. Mater. Sci. Technol. ›› 2022, Vol. 110: 14-23.DOI: 10.1016/j.jmst.2021.10.011
• Research Article • Previous Articles Next Articles
Luohuizi Lia, Guize Lia, Yong Wub, Yuancheng Lina, Yangcui Quc, Yan Wua, Kunyan Lua, Yi Zoua, Hong Chena, Qian Yua,*(
), Yanxia Zhangb,*(
)
Received:2021-09-17
Revised:2021-10-06
Accepted:2021-10-11
Published:2021-11-09
Online:2021-11-09
Contact:
Qian Yu,Yanxia Zhang
About author:zhangyanxia@suda.edu.cn (Y. Zhang).Luohuizi Li, Guize Li, Yong Wu, Yuancheng Lin, Yangcui Qu, Yan Wu, Kunyan Lu, Yi Zou, Hong Chen, Qian Yu, Yanxia Zhang. Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties[J]. J. Mater. Sci. Technol., 2022, 110: 14-23.
Fig. 1. (a) Representative TEM image of GNRs. (b) Size distribution of GNRs. (c) UV-vis spectrum of GNRs. (d) Temperature change of solution containing GNRs with different concentrations under NIR irradiation (0.5 W/cm2).
Fig. 2. (a-d) Representative SEM images of (a) BC, (b) BG, (c) BP, and (d) BGP membranes (the higher magnification images are shown in the insets and GNRs are pseudo-colored yellow). (e) Elemental composition and surface wettability of sample membranes. (f, g) High-resolution XPS spectra of (f) Au 4f and (g) N 1s of sample membranes. (h) ATR-FTIR spectra of sample membranes.
Fig. 3. (a-d) Representative fluorescence images of adsorbed FITC-BSA on (a) BC, (b) BG, (c) BP and (d) BGP membranes. The corresponding fluorescence intensity was shown in (e). Data are mean ± SD (n = 3, ***p < 0.001).
Fig. 4. (a) Representative fluorescence images of E. coli (DH5α-pBADDs) attached to the surfaces of BC and BGP membranes after incubation in bacterial solution for 3 h and 24 h, respectively. The corresponding bacterial density was shown in (b). (c) Representative fluorescence images of L929 cells attached to the surfaces of BC and BGP membranes after culture for 4 h and 24 h, respectively (living cells were stained with Calcein-AM showing green fluorescence). The corresponding cell density was shown in (d). Data are mean ± SD (n = 3, ***p < 0.001).
Fig. 5. (a) Surface temperature changes of sample membranes under NIR irradiation. The corresponding IR thermal images were shown right. (b) Surface temperature change of the BGP membrane during five ON/OFF cycles of NIR irradiation. The sample membranes were immersed in PBS during NIR irradiation (0.5 W/cm2).
Fig. 6. (a, b) Representative SEM images of a single (a) E. coli and (b) S. aureus attached to the sample membranes with or without NIR irradiation (0.5 W/cm2, 5 min) (red arrows: broken area of bacterial membrane). (c, d) Numbers of formed colonies of (c) E. coli and (d) S. aureus for the sample membranes with or without NIR irradiation (0.5 W/cm2, 5 min). Data are mean ± SD (n = 3). # indicates negligible formed colonies.
Fig. 7. (a) Representative fluorescence images of L929 fibroblasts attached to the surface of control (cell culture plate), BC and BGP membranes after culture for 48 h. (b) Proliferation of L929 fibroblasts on the surface of sample membranes after culture for different periods. Data are mean ± SD (n = 3).
Fig. 8. (a) Representative photographs of wounds treated with a gauze and a BGP membrane with NIR irradiation (0.5 W/cm2, 5 min) at different time points. The corresponding relative wound area at different time points is shown in (b). (c) Representative H&E staining of the tissues harvested from the wound areas of rats in different groups on day 1 and day 12 post-treatment (blue arrows: neutrophils, red arrows: vessels, yellow arrows: hair follicles).
| [1] |
G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. de Souza, A.A. Martin, R. da Silva, R.A. de Freitas, Int. J. Biol. Macromol. 104 (2017) 97-106.
DOI URL |
| [2] | S. Torgbo, P. Sukyai, Appl. Today 11 (2018) 34-49. |
| [3] | T. Carvalho, G. Guedes, F.L. Sousa, C.S.R. Freire, H.A. Santos, Biotechnol. J. 14 (2019) 1900059. |
| [4] |
H.G. De Oliveira Barud, R.R. da Silva, H. da Silva Barud, A. Tercjak, J. Gutier- rez, W.R. Lustri, O.B.J. de Oliveira, S.J.L. Ribeiro, Carbohydr. Polym. 153 (2016) 406-420.
DOI URL |
| [5] | J. Ahmed, M. Gultekinoglu, M. Edirisinghe, Biotechnol. Adv. 41 (2020) 107549. |
| [6] |
S. Gorgieva, Processes 8 (2020) 624.
DOI URL |
| [7] | T. Wei, Y. Qu, Y. Zou, Y. Zhang, Q. Yu, Curr. Opin. Chem. Eng. 34 (2021) 100727. |
| [8] |
S. Gorgieva, J. Trcek, Nanomaterials 9 (2019) 1352.
DOI URL |
| [9] |
H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, D.E. Holmes, T. Gu, F. Wang, D.R. Lovley, ISME J. 15 (2021) 3084-3093.
DOI URL |
| [10] |
H. Zhao, Y. Sun, L. Yin, Z. Yuan, Y. Lan, D. Xu, C. Yang, K. Yang, J. Mater. Sci. Technol. 66 (2021) 112-120.
DOI URL |
| [11] |
E. Zhou, D. Qiao, Y. Yang, D. Xu, Y. Lu, J. Wang, J.A. Smith, H. Li, H. Zhao, P.K. Liaw, F. Wang, J. Mater. Sci. Technol. 46 (2020) 201-210.
DOI URL |
| [12] |
Y. Zou, K. Lu, Y. Lin, Y. Wu, Y. Wang, L. Li, C. Huang, Y. Zhang, J.L. Brash, H. Chen, Q. Yu, ACS Appl. Mater. Interfaces 13 (2021) 45191-45200.
DOI URL |
| [13] |
Q. Yu, Z. Wu, H. Chen, Acta Biomater. 16 (2015) 1-13.
DOI URL |
| [14] |
Y. Zou, Y. Zhang, Q. Yu, H. Chen, J. Mater. Sci. Technol. 70 (2021) 24-38.
DOI |
| [15] |
H. Ahmad, Cellulose 28 (2021) 2715-2761.
DOI URL |
| [16] |
H. Kurniawan, Y.S. Ye, W.H. Kuo, J.T. Lai, M.J. Wang, H.S. Liu, Biochem. Eng. J. 78 (2013) 138-145.
DOI URL |
| [17] | Y. Wang, C. Wang, Y. Xie, Y. Yang, Y. Zheng, H. Meng, W. He, K. Qiao, Carbohydr. Polym. 222 (2019) 114985. |
| [18] | X. Wu, Y. He, G. Lai, R. Zeng, M. Tu, Cellulose 27 (2020) 10061-10075. |
| [19] |
J. Baggerman, M. M.J. Smulders, H. Zuilhof, Langmuir 35 (2019) 1072-1084.
DOI PMID |
| [20] | J.H. Park, J.A. Jackman, A.R. Ferhan, G.J. Ma, B.K. Yoon, N.J. Cho, ACS Appl. Mater. Interfaces 10 (2018) 32047-32057. |
| [21] | H. Qi, W. Zheng, X. Zhou, C. Zhang, L. Zhang, Chem. Commun. 54 (2018) 11328-11331. |
| [22] |
Y. Qu, T. Wei, J. Zhao, S. Jiang, P. Yang, Q. Yu, H. Chen, J. Mater. Chem. B 6 (2018) 3946-3955.
DOI URL |
| [23] |
J. Zhao, Y. Qu, H. Chen, R. Xu, Q. Yu, P. Yang, J. Mater. Chem. B 6 (2018) 4645-4655.
DOI URL |
| [24] | Z. Wu, P. Yang, Adv. Mater. Interfaces 2 (2015) 1400401. |
| [25] |
J. Gu, S. Miao, Z. Yan, P. Yang, Colloid Interface Sci. Commun. 22 (2018) 42-48.
DOI URL |
| [26] | X. Hu, J. Tian, C. Li, H. Su, R. Qin, Y. Wang, X. Cao, P. Yang, Adv. Mater. 32 (2020) 2000128. |
| [27] |
J. Tian, Y. Liu, S. Miao, Q. Yang, X. Hu, Q. Han, L. Xue, P. Yang, Biomater. Sci. 8 (2020) 6903-6911.
DOI URL |
| [28] |
T.R. Stumpf, X. Yang, J. Zhang, X. Cao, Mater. Sci. Eng. C 82 (2018) 372-383.
DOI URL |
| [29] |
A. Sheikhi, J. Hayashi, J. Eichenbaum, M. Gutin, N. Kuntjoro, D. Khorsandi, A. Khademhosseini, J. Control. Release 294 (2019) 53-76.
DOI URL |
| [30] |
G.M. Lemnaru Popa, R.D. Trusca, C.I. Ilie, R.E. Tiplea, D. Ficai, O. Oprea, A. Sto- ica-Guzun, A. Ficai, L.M. Ditu, Molecules 25 (2020) 4069.
DOI URL |
| [31] |
M. Rouabhia, J. Asselin, N. Tazi, Y. Messaddeq, D. Levinson, Z. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 1439-1446.
DOI URL |
| [32] |
N.T. Lacin, Int. J. Biol. Macromol. 67 (2014) 22-27.
DOI URL |
| [33] |
W. Shao, H. Liu, S. Wang, J. Wu, M. Huang, H. Min, X. Liu, Carbohydr. Polym. 145 (2016) 114-120.
DOI URL |
| [34] |
A.R. Figueiredo, A.G. Figueiredo, N.H. Silva, A. Barros-Timmons, A. Almeida, A.J. Silvestre, C.S. Freire, Carbohydr. Polym. 123 (2015) 443-453.
DOI URL |
| [35] | O. Kukharenko, J.F. Bardeau, I. Zaets, L. Ovcharenko, O. Tarasyuk, S. Porhyn, I. Mischenko, A. Vovk, S. Rogalsky, N. Kozyrovska, N. Polym. J. 60 (2014) 247-254. |
| [36] |
B. Wei, G. Yang, F. Hong, Carbohydr. Polym. 84 (2011) 533-538.
DOI URL |
| [37] | Y. Li, Y. Tian, W. Zheng, Y. Feng, R. Huang, J. Shao, R. Tang, P. Wang, Y. Jia, J. Zhang, W. Zheng, G. Yang, X. Jiang, Small 13 (2017) 1700130. |
| [38] |
A. Gupta, S.M. Briffa, S. Swingler, H. Gibson, V. Kannappan, G. Adamus, M. Kowalczuk, C. Martin, I. Radecka, Biomacromolecules 21 (2020) 1802-1811.
DOI URL |
| [39] |
Y. Chen, Y. Gao, Y. Chen, L. Liu, A. Mo, Q. Peng, J. Control. Release 328 (2020) 251-262.
DOI URL |
| [40] | M. Borzenkov, P. Pallavicini, A. Taglietti, L. D’Alfonso, M. Collini, G. Chirico, Beil- stein J. Nanotechnol. 11 (2020) 1134-1146. |
| [41] | M. Ullah, A. Wahab, D. Khan, S. Saeed, S.U. Khan, N. Ullah, T.A. Saleh, Colloid Interface Sci. Commun. 42 (2021) 100412. |
| [42] |
Y. Zou, Y. Zhang, Q. Yu, H. Chen, Biomater. Sci. 9 (2021) 10-22.
DOI URL |
| [43] | G. Sheng, J. Ni, K. Xing, L. Fan, T. Dai, J. Yu, X. Dai, R. Chen, J. Wu, N. Li, J. Chen, Z. Mao, L. Li, Colloid Interface Sci. Commun. 41 (2021) 100379. |
| [44] |
J. Song, J. Li, X. Bai, L. Kang, L. Ma, N. Zhao, S. Wu, Y. Xue, J. Li, X. Ji, J. Sha, J. Mater. Sci. Technol. 87 (2021) 83-94.
DOI |
| [45] | Y. Wang, T. Wei, Y. Qu, Y. Zhou, Y. Zheng, C. Huang, Y. Zhang, Q. Yu, H. Chen, ACS Appl. Mater. Interfaces 12 (2020) 21283-21291. |
| [46] |
Y. Wang, Y. Zou, Y. Wu, T. Wei, K. Lu, L. Li, Y. Lin, Y. Wu, C. Huang, Y. Zhang, H. Chen, Q. Yu, ACS Appl. Mater. Interfaces 13 (2021) 48403-48413.
DOI URL |
| [47] |
W. Wang, D. Ding, K. Zhou, M. Zhang, W. Zhang, F. Yan, N. Cheng, J. Mater. Sci. Technol. 93 (2021) 17-27.
DOI URL |
| [48] | H. Chen, L. Shao, Q. Li, J. Wang, Chem. Soc. Rev. 42 (2013) 2679-2724. |
| [49] |
S.M. Mousavi, S.A. Hashemi, S. Mazraedoost, K. Yousefi, A. Gholami, G. Be- hbudi, S. Ramakrishna, N. Omidifar, A. Alizadeh, W.H. Chiang, Nanomaterials 11 (2021) 1868.
DOI URL |
| [50] |
Y. Zheng, Y. Wu, Y. Zhou, J. Wu, X. Wang, Y. Qu, Y. Wang, Y. Zhang, Q. Yu, ACS Appl. Mater. Interfaces 12 (2020) 7905-7914.
DOI URL |
| [51] |
T. Yang, D. Wang, X. Liu, J. Mater. Chem. B 8 (2020) 406-415.
DOI URL |
| [52] |
Y.Q. Zhao, Y. Sun, Y. Zhang, X. Ding, N. Zhao, B. Yu, H. Zhao, S. Duan, F.J. Xu, ACS Nano 14 (2020) 2265-2275.
DOI PMID |
| [53] |
C. Bermudez-Jimenez, N. Nino-Martinez, N. Patino-Marin, F. Martinez-Gutier- rez, F. Ruiz, H. Bach, G. Martinez-Castanon, J. Biomed. Mater. Res. Part B 108 (2020) 333-342.
DOI URL |
| [54] | J. Li, Y. Wang, J. Yang, W. Liu, Chem. Eng. J. 420 (2021) 127638. |
| [55] |
F.G. Blanco Parte, S.P. Santoso, C.C. Chou, V. Verma, H.T. Wang, S. Ismadji, K.C. Cheng, Crit. Rev. Biotechnol. 40 (2020) 397-414.
DOI URL |
| [56] | O. Eskilson, S.B. Lindström, B. Sepulveda, M.M. Shahjamali, P. Güell-Grau, P. Sivlér, M. Skog, C. Aronsson, E.M. Björk, N. Nyberg, H. Khalaf, T. Bengtsson, J. James, M.B. Ericson, E. Martinsson, R. Selegård, D. Aili, Adv. Funct. Mater. 30 (2020) 2004766. |
| [57] | N. Hlapisi, T.E. Motaung, L.Z. Linganiso, O.S. Oluwafemi, S.P. Songca, Bioinorg. Chem. Appl. 2019 (2019) 7147128. |
| [58] | G. Guan, K.Y. Win, X. Yao, W. Yang, M.Y. Han ,Adv. Healthc. Mater. 10 (2021) 2001158. |
| [59] |
W. Liu, H. Du, M. Zhang, K. Liu, H. Liu, H. Xie, X. Zhang, C. Si, ACS Sustain. Chem. Eng. 8 (2020) 7536-7562.
DOI URL |
| [60] |
Z. Cheng, Z. Ye, A. Natan, Y. Ma, H. Li, Y. Chen, L. Wan, C. Aparicio, H. Zhu, ACS Appl. Mater. Interfaces 11 (2019) 42486-42495.
DOI URL |
| [61] |
S. Chen, Y. Chen, D. Li, Y. Xu, F. Xu, ACS Appl. Mater. Interfaces 13 (2021) 8754-8763.
DOI URL |
| [62] | S. Jiji, S. Udhayakumar, K. Maharajan, C. Rose, C. Muralidharan, K. Kadirvelu, Carbohydr. Polym. 245 (2020) 116573. |
| [63] | T. Wei, Q. Yu, H. Chen, Adv. Healthc. Mater. 8 (2019) 1801381. |
| [64] | Q. Yu, H. Chen, Acta Polym. Sin. 51 (2020) 319-325. |
| [65] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
| [66] |
M.L. Foresti, A. Vazquez, B. Boury, Carbohydr. Polym. 157 (2017) 447-467.
DOI URL |
| [67] |
J.W. Xu, K. Yao, Z.K. Xu, Nanoscale 11 (2019) 8680-8691.
DOI URL |
| [68] |
C. Xu, O.U. Akakuru, X. Ma, J. Zheng, J. Zheng, A. Wu, Bioconjug. Chem. 31 (2020) 1708-1723.
DOI URL |
| [69] |
S. Homaeigohar, A.R. Boccaccini, Acta Biomater. 107 (2020) 25-49.
DOI PMID |
| [70] | T. Cui, F. Yu, Q. Zhang, Z. Yang, Y. Wan, X. Deng, H. Luo, Colloid Interface Sci. Commun. 44 (2021) 100496. |
| [71] |
R. Portela, C.R. Leal, P.L. Almeida, R.G. Sobral, Microb. Biotechnol. 12 (2019) 586-610.
DOI PMID |
| [1] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
| [2] | Yuan Zhang, Shan Fu, Lei Yang, Gaowu Qin, Erlin Zhang. A nano-structured TiO2/CuO/Cu2O coating on Ti-Cu alloy with dual function of antibacterial ability and osteogenic activity [J]. J. Mater. Sci. Technol., 2022, 97(0): 201-212. |
| [3] | Yonghua Sun, Yuyu Zhao, He Zhang, Youjie Rong, Runhua Yao, Yi Zhang, Xiaohong Yao, Ruiqiang Hang. Corrosion behavior, antibacterial ability, and osteogenic activity of Zn-incorporated Ni-Ti-O nanopore layers on NiTi alloy [J]. J. Mater. Sci. Technol., 2022, 97(0): 69-78. |
| [4] | Lujie Zhang, Jie Pan, Jue Zhang. Integrated two-phase free radical hydrogel: Safe, ultra-fast tooth whitening and antibacterial activity [J]. J. Mater. Sci. Technol., 2022, 100(0): 59-66. |
| [5] | Jie Song, Jun Li, Xiangren Bai, Liang Kang, Liying Ma, Naiqin Zhao, Shuilin Wu, Yuan Xue, Jiajun Li, Xiaojian Ji, Junwei Sha. Cu nanoparticle-decorated two-dimensional carbon nanosheets with superior photothermal conversion efficiency of 65 % for highly efficient disinfection under near-infrared light [J]. J. Mater. Sci. Technol., 2021, 87(0): 83-94. |
| [6] | Wenyu Wang, Dejun Ding, Kunpeng Zhou, Man Zhang, Weifen Zhang, Fang Yan, Ni Cheng. Prussian blue and collagen loaded chitosan nanofibers with NIR-controlled NO release and photothermal activities for wound healing [J]. J. Mater. Sci. Technol., 2021, 93(0): 17-27. |
| [7] | Bing Leng, Xinglai Zhang, Shanshan Chen, Jing Li, Ziqing Sun, Zongyi Ma, Wenjin Yang, Bingchun Zhang, Ke Yang, Shu Guo. Highly efficient visible-light photocatalytic degradation and antibacterial activity by GaN:ZnO solid solution nanoparticles [J]. J. Mater. Sci. Technol., 2021, 94(0): 67-76. |
| [8] | Wei Zhang, Shuyuan Zhang, Hui Liu, Ling Ren, Qiang Wang, Yang Zhang. Effects of surface roughening on antibacterial and osteogenic properties of Ti-Cu alloys with different Cu contents [J]. J. Mater. Sci. Technol., 2021, 88(0): 158-167. |
| [9] | Yang Xue, Jun Chen, Lan Zhang, Yong Han. BSA-lysozyme coated NaCa2HSi3O9 nanorods on titanium for cytocompatibility and antibacterial activity [J]. J. Mater. Sci. Technol., 2021, 88(0): 240-249. |
| [10] | Jingzhi Yang, Hongchang Qian, Junpeng Wang, Pengfei Ju, Yuntian Lou, Guoliang Li, Dawei Zhang. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments [J]. J. Mater. Sci. Technol., 2021, 89(0): 233-241. |
| [11] | Duo Xu, Tianyu Wang, Zhiyuan Lu, Yuanqi Wang, Bin Sun, Shudan Wang, Qiang Fu, Zhenggang Bi, Shuo Geng. Ti-6Al-4V-5Cu synthesized for antibacterial effect in vitro and in vivo via contact sterilization [J]. J. Mater. Sci. Technol., 2021, 90(0): 133-142. |
| [12] | Diangeng Cai, Xiaotong Zhao, Lei Yang, Renxian Wang, Gaowu Qin, Da-fu Chen, Erlin Zhang. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81(0): 13-25. |
| [13] | Mengyang Wang, Shichao Bi, Jianhui Pang, Zhongzheng Zhou, Di Qin, Honglei Wang, Xiaojie Cheng, Xiguang Chen. Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer [J]. J. Mater. Sci. Technol., 2021, 70(0): 224-232. |
| [14] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
| [15] | Xinrui Zhang, Xiaofang Liu, Chunguang Yang, Tong Xi, Jinlong Zhao, Lichu Liu, Ke Yang. New strategy to delay food spoilage: Application of new food contact material with antibacterial function [J]. J. Mater. Sci. Technol., 2021, 70(0): 59-66. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
WeChat
