J. Mater. Sci. Technol. ›› 2021, Vol. 89: 233-241.DOI: 10.1016/j.jmst.2020.11.031
Previous Articles Next Articles
Jingzhi Yanga, Hongchang Qiana,d, Junpeng Wangb, Pengfei Juc, Yuntian Loua, Guoliang Lib,*(), Dawei Zhanga,d,**(
)
Received:
2020-05-07
Revised:
2020-07-13
Accepted:
2020-07-20
Published:
2021-10-30
Online:
2021-10-30
Contact:
Guoliang Li,Dawei Zhang
About author:
**Beijing Advanced Innovation Center for MaterialsGenome Engineering, Institute for Advanced Materials and Technology, Universityof Science and Technology Beijing, Beijing 100083, China. dzhang@ustb.edu.cn (D. Zhang).Jingzhi Yang, Hongchang Qian, Junpeng Wang, Pengfei Ju, Yuntian Lou, Guoliang Li, Dawei Zhang. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments[J]. J. Mater. Sci. Technol., 2021, 89: 233-241.
Sample | Feeding molar ratios of SBMA/DMAa | SBMA (mmol) | DMA (mmol) |
---|---|---|---|
1 | 9:1 | 0.9 (0.252 g) | 0.1 (0.023 g) |
2 | 8:2 | 0.8 (0.223 g) | 0.2 (0.045 g) |
3 | 6:4 | 0.6 (0.165 g) | 0.4 (0.090 g) |
Table 1 Feeding amount for preparation of zwitterionic copolymers containing dopamine segments.
Sample | Feeding molar ratios of SBMA/DMAa | SBMA (mmol) | DMA (mmol) |
---|---|---|---|
1 | 9:1 | 0.9 (0.252 g) | 0.1 (0.023 g) |
2 | 8:2 | 0.8 (0.223 g) | 0.2 (0.045 g) |
3 | 6:4 | 0.6 (0.165 g) | 0.4 (0.090 g) |
Fig. 3. Water contact angles of the nanocoatings containing the different proportions of dopamine segments after (a) tape-peeling tests and (b) ultrasonication treatments.
Fig. 4. Mechanical durability of the nanocoatings containing different proportions of dopamine segments. EDS maps of (a) original PS9D1 coatings and the one after 20 cycles of tape-peeling or 40 min of ultrasonication; (b) original PS8D2 coatings and the one after 20 cycles of tape-peeling or 40 min of ultrasonication.
Fig. 5. Fluorescence microscopic images of S. aureus on the bare surfaces after (a1, a2) 1 day, (a3, a4) 3 days; PS6D4 coatings after (b1, b2) 1 day, (b3, b4) 3 days; PS8D2 coatings after (c1, c2) 1 day, (c3, c4) 3 days; and PS9D1 coatings after (d1, d2) 1 day, (d3, d4) 3 days of immersion in inoculated medium.
Fig. 6. Fluorescence microscopic images of E. coli on the bare surfaces after (a1, a2) 1 day, (a3, a4) 3 days; PS6D4 coatings after (b1, b2) 1 day, (b3, b4) 3 days; PS8D2 coatings after (c1, c2) 1 day, (c3, c4) 3 days; and PS9D1 coatings after (d1, d2) 1 day, (d3, d4) 3 days of immersion in inoculated medium.
Fig. 8. Fluorescence microscopic images of (a, b) S. aureus and (c, d) E. coli on treated PS8D2 coatings after 1 day and 3 days of immersion in inoculated medium.
[1] | H. Qian, J. Yang, Y. Lou, O. ur Rahman, Z.Li, X. Ding, J. Gao, C. Du, Appl. Surf.Sci. 465 (2019) 267-278. |
[2] | H. Qian, M. Li, Z. Li, Y. Lou, L. Huang, D. Zhang, D. Xu, C. Du, L. Lu, J. Gao, Mater.Sci. Eng. C 80 (2017) 566-577. |
[3] |
S. Jiang, Z. Cao, Adv. Mater. 22 (2010) 920-932.
DOI URL |
[4] | D. Liu, R. Jia, D. Xu, H. Yang, Y. Zhao, M.S. Khan, S. Huang, J. Wen, K. Yang, T. Gu , J. Mater. Sci.Technol. 35 (2019) 2494-2502. |
[5] |
X. Ding, S. Duan, X. Ding, R. Liu, F. Xu, Adv. Funct. Mater. 28 (2018), 1802140.
DOI URL |
[6] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
[7] |
M. Cloutier, D. Mantovani, F. Rosei, Trends Biotechnol. 33 (2015) 637-652.
DOI PMID |
[8] |
Y. Jiao, L. Niu, S. Ma, J. Li, F.R. Tay, J. Chen, Prog. Polym. Sci. 71 (2017) 53-90.
DOI URL |
[9] |
M.M. Khowdiary, A.A.El-Henawy, A.M. Shawky, M.Y. Sameeh, N.A. Negm, J.Mol. Liq. 230 (2017) 163-168.
DOI URL |
[10] |
I. Banerjee, R.C. Pangule, R.S. Kane, Adv. Mater. 23 (2011) 690-718.
DOI URL |
[11] |
P. Lundberg, A. Bruin, J.W. Klijnstra, A.M. Nystrom, M. Johansson, M. Malkoch, A. Hult, ACS Appl. Mater. Interfaces 2 (2010) 903-912.
DOI URL |
[12] |
Y. Wang, L.M. Pitet, J.A. Finlay, L.H. Brewer, G. Cone, D.E. Betts, M.E. Callow, J. A.Callow D.E. Wendt, M.A. Hillmyer, J.M. DeSimonea, Biofouling 27 (2011) 1139-1150.
DOI URL |
[13] |
H. Sun, X. Yang, Y. Zhang, X. Cheng, Y. Xu, Y. Bai, L. Shao, , J. Membr. Sci. 563 (2018) 22-30.
DOI URL |
[14] |
H. Xu, G. Zhang, K. Xu, L. Wang, L. Yu, M. Xing, X. Qiu, Mater. Sci. Eng. C 90 (2018) 379-386.
DOI URL |
[15] |
W. Yang, T. Cai, K.G. Neoh, E.T. Kang, Langmuir 27 (2011) 7065-7076.
DOI URL |
[16] | L.D. Blackman, P.A. Gunatillake, P. Cass, K.E.S.Locock, Chem. Soc. Rev. 48 (2019) 757-770. |
[17] | S. Li, P. Huang, Z. Ye, Y. Wang, W. Wang, D. Kong, J. Zhang, L. Deng, A. Dong, J.Mater. Chem. B Mater. Biol.Med. 7 (2019) 6024-6034. |
[18] |
S. Chen, L. Li, C. Zhao, J. Zheng, Polymer 51 (2010) 5283-5293.
DOI URL |
[19] |
J.B. Schlenoff, Langmuir 30 (2014) 9625-9636.
DOI PMID |
[20] |
W. Yue, H. Li, T. Xiang, H. Qin, S. Sun, C. Zhao, , J. Membr. Sci. 446 (2013) 79-91.
DOI URL |
[21] |
Q. Ye, B. He, Y. Zhang, J. Zhang, S. Liu, F. Zhou, ACS Appl. Mater. Interfaces 11 (2019) 39171-39178.
DOI URL |
[22] | T. Huang, H. Liu, P. Liu, P. Liu, L. Li, J. Shen, J. Mater. Chem. B Mater. Biol.Med. 5 (2017) 5380-5389. |
[23] |
C. von Birgelen, M.M. Kok, L.C. van der Heijden, P.W. Danse, C.E. Schotborgh, M. Scholte, R.M.T.J. Gin, S. Somi, K.G. van Houwelingen, M.G. Stoel, F.H.A.F. deMan, J.W. Louwerenburg, M. Hartmann, P. Zocca, G.C.M. Linssen, J. van derPalen, C.J.M. Doggen, M.M. Löwik, Lancet 388 (2016) 2607-2617.
DOI PMID |
[24] | Q. Wang, L. Wang, L. Gao, L. Yu, W. Feng, N. Liu, M. Xu, X. Li, P. Li, J. Mater.Chem. B Mater. Biol.Med. 7 (2019) 3865-3875. |
[25] |
A. Rezania, R. Johnson, A.R. Lefkow, K.E.J.L. Healy, Langmuir 15 (1999) 6931-6939.
DOI URL |
[26] |
S. Xiao, M. Textor, N.D. Spencer, H.J.L. Sigrist, Langmuir 14 (1998) 5507-5516.
DOI URL |
[27] |
M. Sin, Y. Sun, Y. Chang, ACS Appl. Mater. Interfaces 6 (2014) 861-873.
DOI URL |
[28] |
B. Yu, J. Zheng, Y. Chang, M. Sin, C. Chang, A. Higuchi, Y. Sun, Langmuir 30 (2014) 7502-7512.
DOI URL |
[29] |
S. Marcinko, A.Y.J.L. Fadeev, Langmuir 20 (2004) 2270-2273.
PMID |
[30] |
N. Hijon, M. Cabanas, I. Izquierdo-Barba, M. Vallet-Regí, Chem. Mater. 16 (2004) 1451-1455.
DOI URL |
[31] |
C. Queffélec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Chem. Rev. 112 (2012) 3777-3807.
DOI PMID |
[32] |
C. Gao, G. Li, H. Xue, W. Yang, F. Zhang, S. Jiang, Biomaterials 31 (2010) 1486-1492.
DOI URL |
[33] |
S.H. Ku, J. Ryu, S.K. Hong, H. Lee, C.B. Park, Biomaterials 31 (2010) 2535-2541.
DOI URL |
[34] |
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426-430.
DOI URL |
[35] | D. Placha, A. Munoz-Bonilla, K. Skrlova, C. Echeverria, A. Chiloeches, M. Petr, K. Lafdi, M. Fernandez-Garcia, Nanomaterials Basel (Basel) 10 (2020) 1218. |
[36] |
M. Xu, Q. Song, L. Gao, H. Liu, W. Feng, J. Huo, H. Jin, L. Huang, J. Chai, Y. Pei, X. Qu, P. Li, W. Huang, Chem. Eng. J. 396 (2020), 125240.
DOI URL |
[37] | A. Chiloeches, C. Echeverría, R. Cuervo-Rodríguez, D. Plachá, F. López-Fabal M. Fernández-García, A.J.Pi.O.C.Mu˜noz-Bonilla,Prog. Org. Coat. 136 (2019),105272. |
[38] | C. Yang, X. Ding, R.J. Ono, H. Lee, L.Y. Hsu, Y.W. Tong, J. Hedrick, Y. Yang, Adv.Mater. 26 (2014) 7346-7351. |
[39] | J. Ko, Y.J. Kim, Y.S. Kim, Interfaces 8 (2016) 23854-23861. |
[40] |
F. Zhang, H. Qian, L. Wang, Z. Wang, C. Du, X. Li, D. Zhang, Surf. Coat. Technol. 341 (2018) 15-23.
DOI URL |
[41] | Y. Lou, L. Lin, D. Xu, S. Zhao, C. Yang, J. Liu, Y. Zhao, T. Gu, K. Yang, Int.Biodeterior. Biodegrad. 110 (2016) 199-205. |
[42] |
J. Xia, C. Yang, D. Xu, D. Sun, L. Nan, Z. Sun, Q. Li, T. Gu, K. Yang, Biofouling 31 (2015) 481-492.
DOI URL |
[43] | G.V. Dizon, Y.N. Chou, L.C. Yeh, A. Venault, J. Huang, Y. Chang, J. ColloidInterface Sci. 529 (2018) 77-89. |
[44] |
H. Lee, J. Rho, P.B. Messersmith, Adv. Mater. 21 (2009) 431-434.
DOI URL |
[45] |
J. Ryu, S.H. Ku, H. Lee, C.B. Park, Adv. Funct. Mater. 20 (2010) 2132-2139.
DOI URL |
[46] |
H.G. Silverman, F.F. Roberto, Mar. Biotechnol. 9 (2007) 661-681.
PMID |
[47] |
H. Lee, N.F. Scherer, P.B. Messersmith, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 12999-13003.
DOI URL |
[48] | J.W. Costerton, Berlin Heidelberg, 2007. |
[49] |
Y. Oppenheimer-Shaanan, N. Steinberg, I. Kolodkin-Gal, Trends Microbiol. 21 (2013) 594-601.
DOI PMID |
[50] | S. Chen, S. Chen, S. Jiang, Y. Mo, J. Luo, J. Tang, Z. Ge, Colloids Surf. BBiointerfaces 85 (2011) 323-329. |
[51] | A. Golabchi, B. Wu, B. Cao, C.J. Bettinger, X.T. Cui, Biomaterials 225 (2019),119519. |
[52] |
Y. Hu, B. Liang, L. Fang, G. Ma, G. Yang, Q. Zhu, S. Chen, X. Ye, Langmuir 32 (2016) 11763-11770.
DOI URL |
[53] |
Y. Gou, X. Yang, L. He, X. Xu, Y. Liu, Y. Liu, Y. Gao, Q. Huang, K. Liang, C. Ding, J. Li, C. Zhao, J. Li, Polym. Chem. 8 (2017) 4264-4279.
DOI URL |
[54] | P. Yuan, X. Qiu, X. Wang, R. Tian, L. Wang, Y. Bai, S. Liu, X. Chen, Adv.Healthcare Mater. 8 (2019), 1801423. |
[1] | Fandi Meng, Li Liu, Yu Cui, Fuhui Wang. Evaluation of coating resistivity for pigmented/unpigmented epoxy coatings under marine alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 165-175. |
[2] | Li Liu, Wan Peng, Xiao Zhang, Jiangmei Peng, Pingsheng Liu, Jian Shen. Rational design of phosphonate/quaternary amine block polymer as an high-efficiency antibacterial coating for metallic substrates [J]. J. Mater. Sci. Technol., 2021, 62(0): 96-106. |
[3] | Guangrong Li, Chunhua Tang, Guanjun Yang. Dynamic-stiffening-induced aggravated cracking behavior driven by metal-substrate-constraint in a coating/substrate system [J]. J. Mater. Sci. Technol., 2021, 65(0): 154-163. |
[4] | Junwei Chang, Zhenyu Wang, En-hou Han, Xinlei Liang, Gang Wang, Zuyao Yi, Na Li. Corrosion resistance of tannic acid, d-limonene and nano-ZrO2 modified epoxy coatings in acid corrosion environments [J]. J. Mater. Sci. Technol., 2021, 65(0): 137-150. |
[5] | Jing Zhang, Sunxiang Qian, Lingdong Chen, Liqun Chen, Liping Zhao, Jie Feng. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness [J]. J. Mater. Sci. Technol., 2021, 85(0): 235-244. |
[6] | Peng-fei He, Guo-zheng Ma, Hai-dou Wang, Ling Tang, Ming Liu, Yu Bai, Yu Wang, Jian-jiang Tang, Dong-yu He, Hai-chao Zhao, Tian-yang Yu. Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying [J]. J. Mater. Sci. Technol., 2021, 87(0): 216-233. |
[7] | Rui Liu, Li Liu, Wenliang Tian, Yu Cui, Fuhui Wang. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64(0): 233-240. |
[8] | Xu Han, Jianhua Wu, Xianhui Zhang, Junyou Shi, Jiaxin Wei, Yang Yang, Bo Wu, Yonghui Feng. Special issue on advanced corrosion-resistance materials and emerging applications. The progress on antifouling organic coating: From biocide to biomimetic surface [J]. J. Mater. Sci. Technol., 2021, 61(0): 46-62. |
[9] | Jiansen Pan, Qingmei Peng, Guoliang Zhang, Qingyi Xie, Xiangjun Gong, Pei-Yuan Qian, Chunfeng Ma, Guangzhao Zhang. Antifouling mechanism of natural product-based coatings investigated by digital holographic microscopy [J]. J. Mater. Sci. Technol., 2021, 84(0): 200-207. |
[10] | Jiashun Shi, Suchun Wang, Xin Cheng, Shiqiang Chen, Guangzhou Liu. Constructing zwitterionic nanofiber film for anti-adhesion of marine corrosive microorganisms [J]. J. Mater. Sci. Technol., 2021, 70(0): 145-155. |
[11] | Yi Zou, Yanxia Zhang, Qian Yu, Hong Chen. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously [J]. J. Mater. Sci. Technol., 2021, 70(0): 24-38. |
[12] | Erica Rosella, Nan Jia, Diego Mantovani, Jesse Greener. A microfluidic approach for development of hybrid collagen-chitosan extracellular matrix-like membranes for on-chip cell cultures [J]. J. Mater. Sci. Technol., 2021, 63(0): 54-61. |
[13] | P.A. Morton, H.C. Taylor, L.E. Murr, O.G. Delgado, C.A. Terrazas, R.B. Wicker. In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion [J]. J. Mater. Sci. Technol., 2020, 45(0): 98-107. |
[14] | Heng Chen, Zifan Zhao, Huimin Xiang, Fu-Zhi Dai, Wei Xu, Kuang Sun, Jiachen Liu, Yanchun Zhou. High entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12: A novel high temperature stable thermal barrier material [J]. J. Mater. Sci. Technol., 2020, 48(0): 57-62. |
[15] | Paul C. Uzoma, Fuchun Liu, En-Hou Han. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane [J]. J. Mater. Sci. Technol., 2020, 45(0): 70-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||