J. Mater. Sci. Technol. ›› 2022, Vol. 106: 1-9.DOI: 10.1016/j.jmst.2021.08.009
• Research Article • Next Articles
Peng Gaoa,1, Shuo Sunb,1, Heng Lia,b, Ranming Niua, Shuang Hanb,*(), Hongxiang Zongc, Hao Wanga, Jianshe Lianb, Xiaozhou Liaoa,*(
)
Received:
2021-06-18
Revised:
2021-08-08
Accepted:
2021-08-11
Published:
2022-04-20
Online:
2021-09-25
Contact:
Shuang Han,Xiaozhou Liao
About author:
xiaozhou.liao@sydney.edu.au (X. Liao).1These authors contributed equally to this work.
Peng Gao, Shuo Sun, Heng Li, Ranming Niu, Shuang Han, Hongxiang Zong, Hao Wang, Jianshe Lian, Xiaozhou Liao. Ultra-strong and thermally stable nanocrystalline CrCoNi alloy[J]. J. Mater. Sci. Technol., 2022, 106: 1-9.
Fig. 1. TKD IPF maps and pole figures from (a) the plain view and (b) a cross-section of the CrCoNi alloy. (c) A high-resolution TEM image of a typical columnar grain. TBs and stacking faults are marked with red and green dash lines, respectively. (d) A typical electron diffraction pattern obtained from a plan-view sample. (e) STEM-EDXS results of the area shown at the left. (f) A plan-view TEM image (upper) and the corresponding EDXS line scan results (lower) along the yellow line.
Fig. 2. (a) Engineering stress-strain curve from in-situ compression along a direction perpendicular to the film growth direction. The red curve was from the sample to be analysed in detail below. Numbers 1-4 indicate 4 deformation stages: before compression, right after yielding, a middle stage of deformation, and a late stage of deformation. Inset is a schematic illustration of the substrate, the columnar structure and loading configuration. (b) Engineering stress-strain curve from in-situ compression along the film growth direction. The red curve is the representative curve for detailed analysis below. Inset is a schematic illustration of the substrate and columnar structure and loading configuration. (c) Comparison of yield strengths of other FCC alloys. CG represents coarse-grained.
Fig. 3. (a) The representative pillar at stages 1, 3 and 4. (b) The microstructure of a pillar at stage 2 from another pillar. The green box indicates part of the shear band area. (c) A magnified image of the area marked by the white square in (b).
Fig. 4. (a) The microstructure at stage 4. The green rectangle indicates the boundary of the shear band area. (b) and (c) Magnified images of the areas indicated with the white and yellow rectangles, respectively, in (a).
Fig. 5. (a) The microstructure of typical columnar grains before compression. (b) The microstructure of a deformed columnar grain after yielding. The yellow dash lines pointed by arrows indicate twin planes. (c) The microstructure of a columnar grain at a late deformation stage. (d) An enlarged image of the area marked with the red rectangle in (c). The red dash lines mark twin boundaries.
Fig. 6. Typical plan-view TEM images of nc CrCoNi films at (a) the as-deposited state and after annealing for 2 h at: (b) 873 K and (c) 1073 K. Grains showing clear nanotwins or stacking faults were marked with red circles. (d) Grain size and hardness at various annealing temperatures. (e) Measured grain size vs annealing temperature curves for the nc CrCoNi in this study and other nc metallic materials from the literature. The annealing durations of these other materials were ≤ 2 h. MD simulations of the thermal stability of (f) nc Ni and (g) nc CrCoNi at 1000 K.
Fig. 7. (a) Cross-sectional microstructure of a pillar compressed along the grain growth direction immediately after the yield point. Yellow arrows point to some intact columnar grains. Collapsed grains are shown below the yellow dash line. (b) A magnified image of the red rectangle area in (a).
[1] | B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7 (2016) 1-8. |
[2] |
J.Y. Zhang, Q.F. He, J. Li, Y. Yang, Int. J. Plast. 139 (2021) 102951.
DOI URL |
[3] |
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345 (2014) 1153-1158.
DOI PMID |
[4] |
Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Acta Mater. 124 (2017) 143-150.
DOI URL |
[5] |
G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Acta Mater. 128 (2017) 292-303.
DOI URL |
[6] |
T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, C.T. Liu, Science 362 (2018) 933-937.
DOI PMID |
[7] |
F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61 (2013) 5743-5755.
DOI URL |
[8] |
B. Gwalani, S. Gorsse, D. Choudhuri, Y. Zheng, R.S. Mishra, R. Banerjee, Scr. Mater. 162 (2019) 18-23.
DOI URL |
[9] |
D.-H. Lee, J.-M. Park, G. Yang, J. He, Z. Lu, J.-Y. Suh, M. Kawasaki, U. Ramamurty, J. Jang, Scr. Mater. 163 (2019) 24-28.
DOI URL |
[10] |
Z.G. Zhu, Q.B. Nguyen, F.L. Ng, X.H. An, X.Z. Liao, P.K. Liaw, S.M.L. Nai, J. Wei, Scr. Mater. 154 (2018) 20-24.
DOI URL |
[11] |
H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, J. Alloys Compd. 663 (2016) 321-331.
DOI URL |
[12] |
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 61 (2014) 1-93.
DOI URL |
[13] |
Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu, Adv. Mater. 18 (2006) 2280-2283.
DOI URL |
[14] |
Y.T. Zhu, X. Liao, Nat. Mater. 3 (2004) 351-352.
DOI URL |
[15] |
S. Yoshida, T. Bhattacharjee, Y. Bai, N. Tsuji, Scr. Mater. 134 (2017) 33-36.
DOI URL |
[16] | K. Lu, Nat. Rev. Mater. 1 (2016) 1-13. |
[17] |
W. Jiang, S. Yuan, Y. Cao, Y. Zhang, Y. Zhao, Acta Mater. 213 (2021) 116982.
DOI URL |
[18] |
J. Wang, S. Wu, S. Fu, S. Liu, Z. Ren, M. Yan, S. Chen, S. Lan, H. Hahn, T. Feng, J. Mater. Sci. Technol. 77 (2021) 126-130.
DOI URL |
[19] |
J. Hu, Y.N. Shi, X. Sauvage, G. Sha, K. Lu, Science 355 (2017) 1292-1296.
DOI PMID |
[20] |
T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337 (2012) 951-954.
DOI PMID |
[21] |
Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Y. Tian, Nature 510 (2014) 250-253.
DOI URL |
[22] |
Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nano Lett. 17 (2017) 1569-1574.
DOI PMID |
[23] |
X. Feng, J. Zhang, K. Wu, X. Liang, G. Liu, J. Sun, Nanoscale 10 (2018) 13329-13334.
DOI URL |
[24] | Y. Chen, X. An, Z. Zhou, P. Munroe, S. Zhang, X. Liao, Z. Xie, Sci. China Mater. (2020). |
[25] | Y. Zou, H. Ma, R. Spolenak, Nat. Commun. 6 (2015) 8. |
[26] |
P.W. Trimby, Ultramicroscopy 120 (2012) 16-24.
DOI URL |
[27] |
P.W. Trimby, Y. Cao, Z. Chen, S. Han, K.J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J.T. Wang, J. Wheeler, J.M. Cairney, Acta Mater. 62 (2014) 69-80.
DOI URL |
[28] |
A.S. Dzhumaliev, Y.V. Nikulin, Y.A. Filimonov, Phys. Solid State 58 (2016) 1247-1256.
DOI URL |
[29] |
K. Lu, L. Lu, S. Suresh, Science 324 (2009) 349-352.
DOI PMID |
[30] |
S. Xue, Q. Li, D.Y. Xie, Y.F. Zhang, H. Wang, H. Wang, J. Wang, X. Zhang, Mater. Res. Lett. 7 (2019) 33-39.
DOI |
[31] |
Y.F. Zhang, Q. Li, S.C. Xue, J. Ding, D.Y. Xie, J. Li, T. Niu, H. Wang, H. Wang, J. Wang, X. Zhang, Nanoscale 10 (2018) 22025-22034.
DOI PMID |
[32] |
Q. Li, S. Xue, J. Wang, S. Shao, A.H. Kwong, A. Giwa, Z. Fan, Y. Liu, Z. Qi, J. Ding, H. Wang, J.R. Greer, H. Wang, X. Zhang, Adv. Mater. 30 (2018) 1704629.
DOI URL |
[33] |
H. Zhang, K.W. Siu, W. Liao, Q. Wang, Y. Yang, Y. Lu, Mater. Res. Express 3 (2016) 094002.
DOI URL |
[34] | N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M.T. Chen, H. Mat- sunoshita, K. Tanaka, H. Inui, E. P.George, Sci.Rep. 6(2016)35863. |
[35] |
A.M. Giwa, P.K. Liaw, K.A. Dahmen, J.R. Greer, Extreme Mech. Lett. 8 (2016) 220-228.
DOI URL |
[36] |
Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, C.T. Liu, Scr. Mater. 64 (2011) 868-871.
DOI URL |
[37] |
S. Fang, C. Wang, C.-L. Li, J.-H. Luan, Z.-B. Jiao, C.-T. Liu, C.-H. Hsueh, J. Alloys Compd. 820 (2020) 153388.
DOI URL |
[38] |
S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Nat. Commun. 11 (2020) 826.
DOI URL |
[39] | W.D. Callister, D.G. Rethwisch, Materials Science and Engineering An Introduction, 9th ed., John Wiley & Sons, New York, 2013. |
[40] |
Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57 (2012) 1-62.
DOI URL |
[41] |
Y. Cao, Y.B. Wang, Z.B. Chen, X.Z. Liao, M. Kawasaki, S.P. Ringer, T.G. Langdon, Y.T. Zhu, Mater. Sci. Eng. A 578 (2013) 110-114.
DOI URL |
[42] |
M.X. Yang, L.L. Zhou, C. Wang, P. Jiang, F.P. Yuan, E.V. Ma, X.L. Wu, Scr. Mater. 172 (2019) 66-71.
DOI URL |
[43] |
F. Ebrahimi, H. Li, Scr. Mater. 55 (2006) 263-266.
DOI URL |
[44] |
N. Zhou, T. Hu, J. Huang, J. Luo, Scr. Mater. 124 (2016) 160-163.
DOI URL |
[45] |
M. Thuvander, M. Abraham, A. Cerezo, G.D.W. Smith, Mater. Sci. Technol. 17 (2001) 961-970.
DOI URL |
[46] |
U. Klement, U. Erb, A.M. El-Sherik, K.T. Aust, Mater. Sci. Eng. A 203 (1995) 177-186.
DOI URL |
[47] |
L. Lu, L.B. Wang, B.Z. Ding, K. Lu, Mater. Sci. Eng. A 286 (2000) 125-129.
DOI URL |
[48] |
L. Lu, N.R. Tao, L.B. Wang, B.Z. Ding, K. Lu, J. Appl. Phys. 89 (2001) 6408-6414.
DOI URL |
[49] |
S. Chakravarty, K. Sikdar, S.S. Singh, D. Roy, C.C. Koch, J. Alloys Compd. 716 (2017) 197-203.
DOI URL |
[50] |
M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 558 (2012) 226-233.
DOI URL |
[51] |
M. Saber, H. Kotan, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 556 (2012) 664-670.
DOI URL |
[52] |
K.A. Darling, B.K. VanLeeuwen, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 527 (2010) 3572-3580.
DOI URL |
[53] |
G.D. Hibbard, K.T. Aust, U. Erb, Acta Mater. 54 (2006) 2501-2510.
DOI URL |
[54] |
G. Hibbard, K. Aust, G. Palumbo, U. Erb, Scr. Mater. 44 (2001) 513-518.
DOI URL |
[55] | M. da Silva, C. Wille, U. Klement, P. Choi, T. Al-Kassab, Mater. Sci. Eng. A (2007) 31-39 445-446. |
[56] |
P. Choi, M. da Silva, U. Klement, T. Al-Kassab, R. Kirchheim, Acta Mater. 53 (2005) 4473-4481.
DOI URL |
[57] |
H.Q. Li, F. Ebrahimi, Acta Mater. 51 (2003) 3905-3913.
DOI URL |
[58] |
T. Hentschel, D. Isheim, R. Kirchheim, F. Müller, H. Kreye, Acta Mater. 48 (2000) 933-941.
DOI URL |
[59] |
G.D. Hibbard, K.T. Aust, U. Erb, Mater. Sci. Eng. A 433 (2006) 195-202.
DOI URL |
[60] |
J. Wang, S. Wu, S. Fu, S. Liu, M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Scr. Mater. 187 (2020) 335-339.
DOI URL |
[61] |
J.R. Greer, J.T.M. De Hosson, Prog. Mater Sci. 56 (2011) 654-724.
DOI URL |
[62] |
D. Kiener, Wolfgang Grosinger, G. Dehm, R. Pippan, Acta Mater. 56 (2008) 580-592.
DOI URL |
[63] | J.-Y. Kim, D. Jang, J. Greer, Scr. Mater. (2009) 300-303. |
[64] |
M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Science 305 (2004) 986-989.
DOI URL |
[65] |
Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, A.M. Minor, Nat. Mater. 7 (2008) 115-119.
PMID |
[66] |
W. Liu, Y. Liu, Y. Cheng, L. Chen, L. Yu, X. Yi, H. Duan, Phys. Rev. Lett. 124 (2020) 235501.
DOI URL |
[67] |
Y.L. Zhao, T. Yang, Y. Tong, J. Wang, J.H. Luan, Z.B. Jiao, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.J. Kai, Acta Mater. 138 (2017) 72-82.
DOI URL |
[68] | S. Sun, P. Gao, G.X. Sun, Z.Y. Cai, J.J. Hu, S. Han, J.S. Lian, X.Z. Liao, J. Alloys Compd. 830 (2020) 1-13. |
[69] |
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Acta Mater. 81 (2014) 428-441.
DOI URL |
[70] |
J. Moon, M.J. Jang, J.W. Bae, D. Yim, J.M. Park, J. Lee, H.S. Kim, Intermetallics 98 (2018) 89-94.
DOI URL |
[71] |
Z.H. Cao, Y.J. Ma, Y.P. Cai, G.J. Wang, X.K. Meng, Scr. Mater. 173 (2019) 149-153.
DOI URL |
[72] | Z. Cheng, H. Zhou, Q. Lu, H. Gao, L. Lu, Science 362 (2018) eaau1925. |
[73] | E.O. Hall, Proc. Phys. Soc., London, Sect. B 64 (1951) 747-753. |
[74] |
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61 (2013) 2769-2782.
DOI URL |
[75] |
F. Duan, Y. Lin, J. Pan, L. Zhao, Q. Guo, D. Zhang, Y. Li, Sci. Adv. 7 (2021) eabg5113.
DOI URL |
[76] |
X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Nature 464 (2010) 877-880.
DOI URL |
[77] |
F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60 (2012) 1059-1071.
DOI URL |
[78] |
D. Jang, J.R. Greer, Nat. Mater. 9 (2010) 215-219.
DOI URL |
[79] |
S. Cheng, Y. Zhao, Y. Guo, Y. Li, Q. Wei, X.-L. Wang, Y. Ren, P.K. Liaw, H. Choo, E.J. Lavernia, Adv. Mater. 21 (2009) 5001-5004.
DOI URL |
[80] |
L. Lu, M.L. Sui, K. Lu, Science 287 (2000) 1463-1466.
PMID |
[81] |
Q. Fang, F. Sansoz, Acta Mater. 212 (2021) 116925.
DOI URL |
[82] |
Z.S. You, L. Lu, K. Lu, Acta Mater. 59 (2011) 6927-6937.
DOI URL |
[83] |
M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, S.V. Divinski, Acta Mater. 146 (2018) 211-224.
DOI URL |
[84] |
X. Zhang, A. Misra, Scr. Mater. 66 (2012) 860-865.
DOI URL |
[1] | H.Z. Lu, L.H. Liu, , X. Luo, C.H. Song, Z. Wang, J. Wang, Y.D. Su, Y.F. Ding, L.C. Zhang, Y.Y. Li. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting [J]. J. Mater. Sci. Technol., 2022, 101(0): 205-216. |
[2] | Yingmei Tan, Ruirun Chen, Hongze Fang, Yangli Liu, Hongzhi Cui, Yanqing Su, Jingjie Guo, Hengzhi Fu. Enhanced strength and ductility in Ti46Al4Nb1Mo alloys via boron addition [J]. J. Mater. Sci. Technol., 2022, 102(0): 16-23. |
[3] | Jingbo Gao, Yuting Jin, Yongqiang Fan, Dake Xu, Lei Meng, Cong Wang, Yuanping Yu, Deliang Zhang, Fuhui Wang. Fabricating antibacterial CoCrCuFeNi high-entropy alloy via selective laser melting and in-situ alloying [J]. J. Mater. Sci. Technol., 2022, 102(0): 159-165. |
[4] | Haoming Pang, Zhenbang Xu, Longjiang Shen, Jun Li, Junshuo Zhang, Zhiyuan Li, Shouhu Xuan, Xinglong Gong. The dynamic compressive properties of magnetorheological plastomers: enhanced magnetic-induced stresses by non-magnetic particles [J]. J. Mater. Sci. Technol., 2022, 102(0): 195-203. |
[5] | Ao Fu, Bin Liu, Zezhou Li, Bingfeng Wang, Yuankui Cao, Yong Liu. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 120-128. |
[6] | Zhen Jiang, Ran Wei, Wenzhou Wang, Mengjia Li, Zhenhua Han, Shuhan Yuan, Kaisheng Zhang, Chen Chen, Tan Wang, Fushan Li. Achieving high strength and ductility in Fe50Mn25Ni10Cr15 medium entropy alloy via Al alloying [J]. J. Mater. Sci. Technol., 2022, 100(0): 20-26. |
[7] | Kaiju Lu, Ankur Chauhan, Dimitri Litvinov, Aditya Srinivasan Tirunilai, Jens Freudenberger, Alexander Kauffmann, Martin Heilmaier, Jarir Aktaa. Micro-mechanical deformation behavior of CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100(0): 237-245. |
[8] | Gang Zhou, Yan Yang, Hanzhu Zhang, Faping Hu, Xueping Zhang, Chen Wen, Weidong Xie, Bin Jiang, Xiaodong Peng, Fusheng Pan. Microstructure and strengthening mechanism of hot-extruded ultralight Mg-Li-Al-Sn alloys with high strength [J]. J. Mater. Sci. Technol., 2022, 103(0): 186-196. |
[9] | Lei Li, Huanzheng Jiao, Congfu Liu, Lin Yang, Yusong Suo, Ruixue Zhang, Tie Liu, Jianzhong Cui. Microstructures, mechanical properties and in vitro corrosion behavior of biodegradable Zn alloys microalloyed with Al, Mn, Cu, Ag and Li elements [J]. J. Mater. Sci. Technol., 2022, 103(0): 244-260. |
[10] | Holden Hyer, Le Zhou, Sharon Park, Thinh Huynh, Abhishek Mehta, Saket Thapliyal, Rajiv S. Mishra, Yongho Sohn. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 103(0): 50-58. |
[11] | J. Ding, A. Inoue, F.L. Kong, S.L. Zhu, Y.L. Pu, E. Shalaan, A.A. Al-Ghamdi, A.L. Greer. Novel heating-and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (M = Fe,Co,Ni,Cu) amorphous alloys [J]. J. Mater. Sci. Technol., 2022, 104(0): 109-118. |
[12] | Haolin Zhu, Ling Liu, Huimin Xiang, Fu-Zhi Dai, Xiaohui Wang, Zhuang Ma, Yanbo Liu, Yanchun Zhou. Improved thermal stability and infrared emissivity of high-entropy REMgAl11O19 and LaMAl11O19 (RE=La, Nd, Gd, Sm, Pr, Dy; M=Mg, Fe, Co, Ni, Zn) [J]. J. Mater. Sci. Technol., 2022, 104(0): 131-144. |
[13] | Yu Yin, Qiyang Tan, Qiang Sun, Wangrui Ren, Jingqi Zhang, Shiyang Liu, Yingang Liu, Michael Bermingham, Houwen Chen, Ming-Xing Zhang. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 113-125. |
[14] | Shiwei Li, Jinglong Li, Junmiao Shi, Yu Peng, Xuan Peng, Xianjun Sun, Feng Jin, Jiangtao Xiong, Fusheng Zhang. Microstructure and mechanical properties of transient liquid phase bonding DD5 single-crystal superalloy to CrCoNi-based medium-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 96(0): 140-150. |
[15] | Bijun Xie, Zhenxiang Yu, Haiyang Jiang, Bin Xu, Chunyang Wang, Jianyang Zhang, Mingyue Sun, Dianzhong Li, Yiyi Li. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96(0): 199-211. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||