J. Mater. Sci. Technol. ›› 2022, Vol. 106: 10-18.DOI: 10.1016/j.jmst.2021.07.032
• Research Article • Previous Articles Next Articles
Ying Guo, Congqi Li, Peiling Wei(), Kai Hou(
), Meifang Zhu
Received:
2021-01-05
Revised:
2021-07-08
Accepted:
2021-07-13
Published:
2022-04-20
Online:
2021-09-24
Contact:
Peiling Wei,Kai Hou
About author:
houkai711@dhu.edu.cn (K. Hou).Ying Guo, Congqi Li, Peiling Wei, Kai Hou, Meifang Zhu. Scalable carbon black deposited fabric/hydrogel composites for affordable solar-driven water purification[J]. J. Mater. Sci. Technol., 2022, 106: 10-18.
Sample | CB(g) | CNF(g) | Water(g) |
---|---|---|---|
NF | 0.000 | 0.0 | 15 |
CB0.14@NF | 0.025 | 2.5 | 15 |
CB0.25@NF | 0.050 | 5.0 | 15 |
CB0.33@NF | 0.075 | 7.5 | 15 |
CB0.40@NF | 0.100 | 10.0 | 15 |
Table 1. The nomenclature and components of fabric samples.
Sample | CB(g) | CNF(g) | Water(g) |
---|---|---|---|
NF | 0.000 | 0.0 | 15 |
CB0.14@NF | 0.025 | 2.5 | 15 |
CB0.25@NF | 0.050 | 5.0 | 15 |
CB0.33@NF | 0.075 | 7.5 | 15 |
CB0.40@NF | 0.100 | 10.0 | 15 |
Sample | 10 wt.% PVA solution(g) | 10 wt.% starch solution(g) |
---|---|---|
PVA | 30.0 | 0.0 |
P8S2 | 24.0 | 6.0 |
P6S4 | 18.0 | 12.0 |
P4S6 | 12.0 | 18.0 |
P2S8 | 6.0 | 24.0 |
starch | 0.0 | 30.0 |
Table 2. The nomenclature and components of hydrogel samples.
Sample | 10 wt.% PVA solution(g) | 10 wt.% starch solution(g) |
---|---|---|
PVA | 30.0 | 0.0 |
P8S2 | 24.0 | 6.0 |
P6S4 | 18.0 | 12.0 |
P4S6 | 12.0 | 18.0 |
P2S8 | 6.0 | 24.0 |
starch | 0.0 | 30.0 |
Fig. 2. Construction of the bilayer CB@NF/PVA/starch composites. (a) Digital photographs of bilayer CB0.33@NF/P6S4 composites taken from the top (ⅰ) and side view (ⅱ). (b) SEM images of CB0.33@NF (ⅰ, ⅱ) and its contact angle (inserts), as well as P6S4 hydrogel (ⅲ, ⅳ) with different magnifications. (c) UV-Vis-NIR spectra of CB@NF. (d) IR images of fabrics with varied CB contents under 1 sun illumination within 15 min. (e) Weight and dimensional equilibrium swelling ratio of as-prepared hydrogels after 72 h. (f) Cyclic stress-strain curves of P6S4 hydrogel at 50% compressive strain.
Fig. 3. Interfacial bonding performance of the bilayer CB@NF/PVA/starch composites. (a) The cross-section image about the interface of CB0.33@NF and P6S4. (b) Illustrations for the interfacial bonding mechanism between the fabric and PVA/starch hydrogel. (c) Photographs for the fabric-hydrogel interface during peeling process. (d) Schematic of the 180° peeling test for bilayer composites. (e) Curves of peeling forces per width versus displacement and (f) calculated interfacial toughness for P6S4 hydrogels bonded with various CB@NF.
Fig. 4. Solar steam generation performance of bilayer evaporator under 1 sun irradiation. (a) Image of self-floating CB0.33@NF/P6S4 evaporator (i) and schematic diagram of the self-made simulated solar evaporation device (ii). (b) Vapor generation mechanism based on CB0.33@NF/P6S4 evaporator. (c) The surface temperature profiles and (d) evaporation mass change of different evaporation systems over time. (e) Average evaporation rate under different systems after 1 h irradiation. (f) The evaporation rate of CB0.33@P6S4 after 1 h and 15 h irradiation, respectively.
Fig. 5. Water purification performance of bilayer evaporator. (a) Metal ions removal capability of CB0.33@NF/P6S4 for actual seawater (from the Yellow Sea, China) and simulated solution. (b) Real-time photographs for salt-rejecting progression under 1 sun illumination. (c) Optical images and (d) UV-Vis absorption spectra of Congo red, methylene blue, O/W emulsion and corresponding purified water.
[1] |
T. Ma, S. Sun, G. Fu, J.W. Hall, Y. Ni, L. He, J. Yi, N. Zhao, Y. Du, T. Pei, W. Cheng, C. Song, C. Fang, C. Zhou, Nat. Commun. 11 (2020) 650.
DOI URL |
[2] |
P.H. Gleick, Science 354 (2016) 555-556.
PMID |
[3] | J.R. Werber, C.O. Osuji, M. Elimelech, Nat. Rev. Mater. 1 (2016) 10618. |
[4] |
A. Deshmukh, C. Boo, V. Karanikola, S. Lin, A.P. Straub, T. Tong, D.M. Warsinger, M. Elimelech, Energy Environ. Sci. 11 (2018) 1177-1196.
DOI URL |
[5] |
L. Zhu, M. Gao, C.K.N. Peh, G.W. Ho, Nano Energy 57 (2019) 507-518.
DOI URL |
[6] | N.S. Lewis, Science 351 (2016) aad 1920. |
[7] |
S. Chu, Y. Cui, N. Liu, Nat. Mater. 16 (2016) 16-22.
DOI URL |
[8] |
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 48 (2019) 2109-2125.
DOI URL |
[9] |
D.P. Storer, J.L. Phelps, X. Wu, G. Owens, N.I. Khan, H. Xu, ACS Appl. Mater. Interfaces 12 (2020) 15279-15287.
DOI URL |
[10] | Y. Lu, X. Wang, D. Fan, H. Yang, H. Xu, H. Min, X. Yang, Sustain. Mater. Technol. 25 (2020) e00180. |
[11] |
P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Nat. Energy 3 (2018) 1031-1041.
DOI URL |
[12] |
Y. Wang, X. Wu, X. Yang, G. Owens, H. Xu, Nano Energy 78 (2020) 105269.
DOI URL |
[13] |
L. Chen, H. Wang, S. Kuravi, K. Kota, Y.H. Park, P. Xu, Desalination 483 (2020) 114412.
DOI URL |
[14] |
L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Sci. Adv. 2 (2016) e1501227.
DOI URL |
[15] |
M. Zhu, Y. Li, F. Chen, X. Zhu, J. Dai, Y. Li, Z. Yang, X. Yan, J. Song, Y. Wang, E. Hitz, W. Luo, M. Lu, B. Yang, L. Hu, Adv. Energy Mater. 8 (2018) 1701028.
DOI URL |
[16] |
Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song, T. Deng, Adv. Mater. 27 (2015) 2768-2774.
DOI URL |
[17] |
X. Zhou, F. Zhao, Y. Guo, B. Rosenberger, G. Yu, Sci. Adv. 5 (2019) eaaw5484.
DOI URL |
[18] |
Z. Wang, Y. Yan, X. Shen, C. Jin, Q. Sun, H. Li, J. Mater. Chem. A 7 (2019) 20706-20712.
DOI |
[19] |
X. Yin, Y. Zhang, Q. Guo, X. Cai, J. Xiao, Z. Ding, J. Yang, ACS Appl. Mater. Interfaces 10 (2018) 10998-11007.
DOI URL |
[20] |
D. Ghim, Q. Jiang, S. Cao, S. Singamaneni, Y.S. Jun, Nano Energy 53 (2018) 949-957.
DOI URL |
[21] |
Z. Guo, G. Wang, X. Ming, T. Mei, J. Wang, J. Li, J. Qian, X. Wang, ACS Appl. Mater. Interfaces 10 (2018) 24583-24589.
DOI URL |
[22] |
Y. Guo, X. Zhou, F. Zhao, J. Bae, B. Rosenberger, G. Yu, ACS Nano 13 (2019) 7913-7919.
DOI URL |
[23] |
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng, Z. Liu, Adv. Mater. 29 (2017) 1702590.
DOI URL |
[24] |
T. Gao, Y. Li, C. Chen, Z. Yang, Y. Kuang, C. Jia, J. Song, E.M. Hitz, B. Liu, H. Huang, J. Yu, B. Yang, L. Hu, Small Methods 3 (2019) 1800176.
DOI URL |
[25] |
B. Zhu, H. Kou, Z. Liu, Z. Wang, D.K. Macharia, M. Zhu, B. Wu, X. Liu, Z. Chen, ACS Appl. Mater. Interfaces 11 (2019) 35005-35014.
DOI URL |
[26] |
X. Meng, W. Xu, Z. Li, J. Yang, J. Zhao, X. Zou, Y. Sun, Y. Dai, Adv. Fiber Mater. 2 (2020) 93-104.
DOI URL |
[27] |
Y. Wang, X. Wu, T. Gao, Y. Lu, X. Yang, G.Y. Chen, G. Owens, H. Xu, Nano Energy 79 (2021) 105477.
DOI URL |
[28] |
Y. Li, T. Gao, Z. Yang, C. Chen, Y. Kuang, J. Song, C. Jia, E.M. Hitz, B. Yang, L. Hu, Nano Energy 41 (2017) 201-209.
DOI URL |
[29] |
X. Zhou, F. Zhao, Y. Guo, Y. Zhang, G. Yu, Energy Environ. Sci. 11 (2018) 1985-1992.
DOI URL |
[30] |
Y. Xu, X. Xiao, X. Fan, Y. Yang, C. Song, Y. Fan, Y. Liu, J. Mater. Chem. A 8 (2020) 24108-24116.
DOI URL |
[31] |
T. Wang, S. Gunasekaran, J. Appl. Polym. Sci. 101 (2006) 3227-3232.
DOI URL |
[32] |
X. Zhou, Y. Guo, F. Zhao, G. Yu, Acc. Chem. Res. 52 (2019) 3244-3253.
DOI URL |
[33] |
F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, G. Yu, Nat. Nanotechnol. 13 (2018) 489-495.
DOI PMID |
[34] |
Y. Guo, F. Zhao, X. Zhou, Z. Chen, G. Yu, Nano Lett. 19 (2019) 2530-2536.
DOI URL |
[35] | Y. Guo, H. Lu, F. Zhao, X. Zhou, W. Shi, G. Yu, Adv. Mater. 32 (2020) e1907061. |
[36] |
K. Haraguchi, H.J. Li, K. Matsuda, T. Takehisa, E. Elliott, Macromolecules 38 (2005) 3482-3490.
DOI URL |
[37] | T. Chen, K. Hou, Q. Ren, G. Chen, P. Wei, M. Zhu, Macromol. Rapid Commun. 39 (2018) e1800337. |
[38] |
P. Wei, T. Chen, G. Chen, H. Liu, I.T. Mugaanire, K. Hou, M. Zhu, ACS Appl. Mater. Interfaces 12 (2020) 3068-3079.
DOI URL |
[39] |
K. Ou, X. Dong, C. Qin, X. Ji, J. He, Mater. Sci. Eng. C 77 (2017) 1017-1026.
DOI URL |
[40] |
A. Olad, F. Doustdar, H. Gharekhani, Carbohydr. Polym. 200 (2018) 516-528.
DOI URL |
[41] |
C. Bai, S. Zhang, L. Huang, H. Wang, W. Wang, Q. Ye, Carbohydr. Polym. 125 (2015) 376-383.
DOI URL |
[42] |
K. Junlapong, P. Boonsuk, C. Chaibundit, S. Chantarak, Int. J. Biol. Macromol. 137 (2019) 521-527.
DOI PMID |
[43] |
M. Akrami, I. Ghasemi, H. Azizi, M. Karrabi, M. Seyedabadi, Carbohydr. Polym. 144 (2016) 254-262.
DOI URL |
[44] |
K. Hou, Y. Nie, I. Tendo Mugaanire, Y. Guo, M. Zhu, Chem. Eng. J. 382 (2020) 122948.
DOI URL |
[45] |
Z. Xu, C. Wei, Y. Gong, Z. Chen, D. Yang, H. Su, T. Liu, Compos. Interfaces 24 (2016) 291-305.
DOI URL |
[46] |
Y. Kuang, C. Chen, G. Pastel, Y. Li, J. Song, R. Mi, W. Kong, B. Liu, Y. Jiang, K. Yang, L. Hu, Adv. Energy Mater. 8 (2018) 1802398.
DOI URL |
[47] |
A. I. Cano, M. Cháfer, A. Chiralt, C. González-Martínez, Polym. Degrad. Stab. 132 (2016) 11-20.
DOI URL |
[48] |
F.S. Tenório, T.L. Amaral Montanheiro, A.M.I. dos Santos, M. Silva, A.P. Lemes, D.B. Tada, J. Appl. Polym. Sci. 138 (2020) 49819.
DOI URL |
[49] |
H.Y. Lee, C.H. Hwang, H.E. Kim, S.H. Jeong, Carbohydr. Polym. 186 (2018) 290-298.
DOI URL |
[50] |
M. Dong, Q. Li, H. Liu, C. Liu, E.K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen, Z. Guo, Polymer 158 (2018) 381-390.
DOI URL |
[51] |
Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens, H. Xu, Sci. Bull. 65 (2020) 1380-1388.
DOI URL |
[52] | Safe Drinking-Water from Desalination, World Health Organization, 2011 https://www.who.int/water_sanitation_health/publications/desalination_guidance/en/. |
[53] |
Y. Xia, Q. Hou, H. Jubaer, Y. Li, Y. Kang, S. Yuan, H. Liu, M.W. Woo, L. Zhang, L. Gao, H. Wang, X. Zhang, Energy Environ. Sci. 12 (2019) 1840-1847.
DOI URL |
[54] |
C. Finnerty, L. Zhang, D.L. Sedlak, K.L. Nelson, B. Mi, Environ. Sci. Technol. 51 (2017) 11701-11709.
DOI PMID |
[1] | Yan Xing, Jing Cheng, Jian Wu, Mengfei Zhang, Xing-ao Li, Wei Pan. Direct electrospinned La2O3 nanowires decorated with metal particles: Novel 1 D adsorbents for rapid removal of dyes in wastewater [J]. J. Mater. Sci. Technol., 2020, 45(0): 84-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||