J. Mater. Sci. Technol. ›› 2022, Vol. 106: 19-27.DOI: 10.1016/j.jmst.2021.08.013
• Research Article • Previous Articles Next Articles
Shicheng Lia, Hongyan Lianga,b,*(), Chong Lia,*(
), Yongchang Liua,*(
)
Received:
2021-07-16
Revised:
2021-08-17
Accepted:
2021-08-24
Published:
2022-04-20
Online:
2021-09-23
Contact:
Hongyan Liang,Chong Li,Yongchang Liu
About author:
ycliu@tju.edu.cn (Y. Liu).Shicheng Li, Hongyan Liang, Chong Li, Yongchang Liu. Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution[J]. J. Mater. Sci. Technol., 2022, 106: 19-27.
Fig. 1. SEM images of Ni3Al alloy after solution treatment at 1160 °C for 10 h with different cooling processes: (a) FC (0.05 °C/s), (b) AC (72 °C/s), and (c) WC (138 °C/s). (d) The averaged phase size and volume ratio of primary γ' phase of different cooling rates.
Fig. 2. (a) XRD results of WC, AC and FC specimens: an identification of γ′ and γ; γ/γ′ (200) deconvolution diffraction peak of FC (b), AC (c) and WC (d) using Pseudo-Voigt as fitting function.
Cooling mode | 2θγ′ (deg.) | αγ′ (nm) | 2θγ (deg.) | αγ (nm) | Lattice mismatch, δ (%) |
---|---|---|---|---|---|
Furnace cooling | 50.878 ± 0.002 | 0.358 ± 0.002 | 50.655 ± 0.003 | 0.360 ± 0.003 | -0.409 ± 0.003 |
Air cooling | 50.522 ± 0.001 | 0.361 ± 0.001 | 50.410 ± 0.002 | 0.362 ± 0.002 | -0.206 ± 0.002 |
Water cooling | 50.451 ± 0.001 | 0.361 ± 0.0001 | 50.359 ± 0.002 | 0.362 ± 0.002 | -0.172 ± 0.002 |
Table 1. Lattice parameter (γ′ and γ) and lattice mismatch of Ni3Al alloy cooled by different cooling rates after solution treatment.
Cooling mode | 2θγ′ (deg.) | αγ′ (nm) | 2θγ (deg.) | αγ (nm) | Lattice mismatch, δ (%) |
---|---|---|---|---|---|
Furnace cooling | 50.878 ± 0.002 | 0.358 ± 0.002 | 50.655 ± 0.003 | 0.360 ± 0.003 | -0.409 ± 0.003 |
Air cooling | 50.522 ± 0.001 | 0.361 ± 0.001 | 50.410 ± 0.002 | 0.362 ± 0.002 | -0.206 ± 0.002 |
Water cooling | 50.451 ± 0.001 | 0.361 ± 0.0001 | 50.359 ± 0.002 | 0.362 ± 0.002 | -0.172 ± 0.002 |
Fig. 3. Primary γ' and γ channel of FC (a), AC (b) and WC (c) specimens observed by TEM. (d) HRTEM image of the region marked by red frame in (a); the inserted images show the FFT image of γ' and γ phases, respectively. (e) and (f) HRTEM images of the marked region in (b) and (c), respectively.
Fig. 4. Characterization of the electrochemical OER activities of Ni3Al electrodes. (a) LSV polarization curves with a scan rate of 2 mV/s. (b) The corresponding Tafel plots derived from LSV curves. (c) The relationship between overpotentials and lattice misfits (γ′ and γ) of different cooling rates. (d) Nyquist plots measured at open circuit potential by EIS. (e) LSV curves of FC specimen before and after 1000 CV cycles, and the multi-current process of FC specimens. The current density started at 5 mA cm-2 and finished at 50 mA cm-2, with an increment of 5 mA cm-2 per 1000 s. (f) Chronopotentiometry curve of FC specimens with a constant current density of 10 mA cm-2.
Fig. 6. (a) In-situ Raman spectra of the FC specimen under various applied potentials. (b) The magnification of (a). (c) In-situ Raman spectra of the FC, AC and WC specimen under 0.8 V (vs. Ag/AgCl) applied potentials.
[1] |
Z.Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, Adv. Mater. 28 (2016) 3777-3784.
DOI URL |
[2] | Z. Jia, T. Yang, L. Sun, Y. Zhao, W. Li, J. Luan, F. Lyu, L.C. Zhang, J.J. Kruzic, J.J. Kai, J.C. Huang, J. Lu, C.T. Liu, Adv. Mater. 32 (2020) 2000385. |
[3] |
G.F. Chen, X.X. Li, L.Y. Zhang, N. Li, T.Y. Ma, Z.Q. Liu, Adv. Mater. 28 (2016) 7680-7687.
DOI URL |
[4] |
X. Wang, C.X. Liu, C.C. Gao, K.L. Yao, S.S.M. Masouleh, R. Berté, H. Ren, L.D.S. Menezes, E. Cortés, I.C. Bicket, H.Y. Wang, N. Li, Z.L. Zhang, M. Li, W. Xie, Y.F. Yu, Y.R. Fang, S.P. Zhang, H.X. Xu, A. Vomiero, Y.C. Liu, G.A. Bot- ton, S.A. Maier, H.Y. Liang, ACS Nano 15 (2021) 10553-10564.
DOI PMID |
[5] |
S. Saha, A.K. Ganguli, ChemistrySelect 2 (2017) 1630-1636.
DOI URL |
[6] |
M. Gong, H. Dai, Nano Res. 8 (2015) 23-39.
DOI URL |
[7] |
F. Song, X. Hu, Nat. Commun. 5 (2014) 4477.
DOI URL |
[8] |
Z.W. Gao, J.Y. Liu, X.M. Chen, X.L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W.C. Wang, X.W. Du, Adv. Mater. 31 (2019) 1804769.
DOI URL |
[9] |
M. Han, N. Wang, B. Zhang, Y.J. Xia, J. Li, J.R. Han, K.L. Yao, C.C. Gao, C.N. He, Y.C. Liu, Z.M. Wang, A. Seifitokaldani, X.H. Sun, H.Y. Liang, ACS Catal. 10 (2020) 9725-9734.
DOI URL |
[10] |
Y. Xu, S. Kameoka, K. Kishida, M. Demura, A. Tsai, T. Hirano, Intermetallics 13 (2005) 151-155.
DOI URL |
[11] |
S. Tanaka, N. Hirose, T. Tanaki, Y.H. Ogata, J. Electrochem. Soc. 147 (2000) 2242.
DOI URL |
[12] |
D.H. Chun, Y. Xu, M. Demura, K. Kishida, M.H. Oh, T. Hirano, D.M. Wee, Catal. Lett. 106 (2006) 71-75.
DOI URL |
[13] |
M. Han, S.C. Li, C. Li, J. Wu, J.R. Han, N. Wang, Y.C. Liu, H.Y. Liang, J. Alloys Compd. 844 (2020) 156094.
DOI URL |
[14] |
C.C.L. Mccrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135 (2013) 16977-16987.
DOI URL |
[15] |
W.J. Dai, T. Lu, Y. Pan, J. Power Sources 430 (2019) 104-111.
DOI URL |
[16] |
J. Wu, C. Li, Y.C. Liu, X.C. Xia, Y.T. Wu, Z.Q. Ma, H.P. Wang, Intermetallics 109 (2019) 48-59.
DOI URL |
[17] |
J. Wu, C. Li, Y.C. Liu, Y.T. Wu, Q.Y. Guo, H.J. Li, H.P. Wang, Mater. Sci. Eng. A 743 (2019) 623-635.
DOI URL |
[18] |
Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, Y.C. Liu, Int. J. Miner Metall. Mater. 28 (2021) 553-566.
DOI URL |
[19] |
Y.T. Wu, C. Li, X.C. Xia, H.Y. Liang, Q.Q. Qi, Y.C. Liu, J. Mater. Sci. Technol. 67 (2021) 95-104.
DOI URL |
[20] | J. Wu, Y.C. Liu, C. Li, Y.T. Wu, X.C. Xia, H.J. Li, Acta Metall. Sin. 56 (2020) 21-35. |
[21] |
M. Faehrmann, P. Fratzl, O. Paris, E. Faehrmann, C.J. William, Acta Mater. 81 (2014) 21-29.
DOI URL |
[22] |
Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, J. Wu, H.J. Li, J. Alloys Compd. 771 (2019) 526-533.
DOI URL |
[23] | X. He, J.B. Zhang, Y.Y. Peng, J. Li, J. Ding, C. Liu, X.C. Xia, X.G. Chen, Y.C. Liu, Acta Metall. Sin. Engl. Lett. 33 (2020) 1709-1726. |
[24] |
O.A. Ojo, M.C. Chaturvedi, Mater. Sci. Eng. A 403 (2005) 77-86.
DOI URL |
[25] |
P. Pandey, A.K. Sawant, B. Nithin, Z. Peng, S.K. Makineni, B. Gault, K. Chattopad-hyay, Acta Mater. 168 (2019) 37-51.
DOI |
[26] |
H.A. Kuhn, H. Biermann, T. Ungar, H. Mughrabi, Acta Metall. Mater. 39 (1991) 2783-2794.
DOI URL |
[27] |
Q.Z. Gao, Y.J. Jiang, Z.Y. Liu, H.L. Zhang, C.C. Jiang, X. Zhang, H.J. Li, Mater. Sci. Eng. A 779 (2020) 139139.
DOI URL |
[28] |
C.H. Zenk, I. Povstugar, R. Li, F. Rinaldi, S. Neumeier, D. Raabe, M. Göken, Acta Mater. 135 (2017) 244-251.
DOI URL |
[29] |
K. Chen, S. Kim, R. Rajendiran, K. Prabakar, G. Li, Z. Shi, C. Jeong, J. Kang, O.L. Li, J. Colloid Interface Sci. 582 (2021) 977-990.
DOI URL |
[30] |
V. Kumaravel, S. Mathew, J. Bartlett, S.C. Pillai, Appl. Catal. B Environ. 244 (2019) 1021-1064.
DOI URL |
[31] |
M. Liu, X. Qiu, M. Miyauchi, K. Hashimoto, J. Am. Chem. Soc. 135 (2013) 10064-10072.
DOI URL |
[32] |
F. Du, X.T. Ling, Z.Y. Wang, S.G. Guo, Y.T. Zhang, H.C. He, G.L. Li, C.H. Jiang, Y. Zhou, Z.G. Zou, J. Catal. 389 (2020) 132-139.
DOI URL |
[33] |
J.R. Han, S. Hao, Z. Liu, A.M. Asiri, X.P. Sun, Y.H. Xu, Chem. Commun. 54 (2018) 1077-1080.
DOI URL |
[34] |
P.T. Liu, J.Q. Ran, B.R. Xia, S.B. Xi, D.Q. Gao, J. Wang, Nano Micro Lett. 12 (2020) 68.
DOI URL |
[35] |
Y.F. Zhou, Z.X. Wang, Z.Y. Pan, L. Liu, J.Y. Xi, X.L. Luo, Y. Shen, Adv. Mater. 31 (2019) 1806769.
DOI URL |
[36] |
Z. Yang, Y. Lin, F.X. Jiao, J.H. Li, J.L. Wang, Y.Q. Gong, J. Energy Chem. 49 (2020) 189-197.
DOI URL |
[37] |
M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41 (2009) 324-332.
DOI URL |
[38] |
J.H. Jang, Y. Xu, M. Demura, D.M. Wee, T. Hirano, Appl. Catal. A Gen. 398 (2011) 161-167.
DOI URL |
[39] |
J. Jin, J.B. Xia, X. Qian, T.L. Wu, H.Q. Ling, A. Hu, M. Li, T. Hang, Electrochim. Acta 299 (2019) 567-574.
DOI URL |
[40] |
Y. Wu, M.J. Zhao, F. Li, J.H. Xie, Y.L. Li, J.B. He, Langmuir 36 (2020) 5126-5133.
DOI URL |
[41] |
A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. Mcintyre, Surf. Sci. 600 (2006) 1771-1779.
DOI URL |
[42] |
M. Görlin, P. Chernev, J. Ferreira De Araújo, T. Reier, S. Dresp, B. Paul, R. Kräh-nert, H. Dau, P. Strasser, J. Am. Chem. Soc. 138 (2016) 5603-5614.
DOI URL |
[43] |
S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, J. Phys. Chem. C 119 (2015) 7243-7254.
DOI URL |
[44] |
L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136 (2014) 6744-6753.
DOI PMID |
[45] |
L.L. Wen, X.L. Zhang, J.Y. Liu, X.Y. Li, C.C. Xing, X.J. Lyu, W.P. Cai, W.C. Wang, Y. Li, Small 15 (2019) 1902373.
DOI URL |
[46] | J.M. Ye, D.H. He, F. Li, Y.L. Li, J.B. He, Chem. Commun. 72 (2018) 1-5. |
[47] |
F.M. Tang, H. Su, X. Zhao, H. Zhang, F.C. Hu, P. Yao, Q.H. Liu, W.R. Cheng, Phys. Chem. Chem. Phys. 21 (2019) 7918-7923.
DOI URL |
[48] |
L. Wu, X.H. Guo, Y. Xu, Y.F. Xiao, J.W. Qian, Y.F. Xu, Z. Guan, Y.H. He, Y. Zeng, RSC Adv. 7 (2017) 32264-32274.
DOI URL |
[49] |
Z. Qiu, C.W. Tai, G.A. Niklasson, T. Edvinsson, Energy Environ. Sci. 12 (2019) 572-581.
DOI URL |
[50] |
D. Thierry, D. Persson, C. Leygraf, D. Delichere, S. Joiret, C. Pallotta, A. Hugot-Le Goff, J. Electrochem. Soc. 135 (1988) 305-310.
DOI URL |
[51] |
Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66 (2019) 104118.
DOI URL |
[52] |
R.C. Taylor, C. Cross, J. Chem. Phys. 24 (1956) 41-44.
DOI URL |
[53] |
X. Bo, R.K. Hocking, S. Zhou, Y.B. Li, X.J. Chen, J.C. Zhuang, Y. Du, C. Zhao, Energy Environ. Sci. 13 (2020) 4225-4237.
DOI URL |
[54] |
R. Kostecki, F. Mclarnon, J. Electrochem. Soc. 144 (1997) 485-493.
DOI URL |
[55] |
C. Johnston, P.R. Graves, Appl. Spectrosc. 44 (1990) 105-115.
DOI URL |
[56] |
B.S. Yeo, A.T. Bell, J. Phys. Chem. C 116 (2012) 8394-8400.
DOI URL |
[57] |
M.W. Louie, A.T. Bell, J. Am. Chem. Soc. 135 (2013) 12329-12337.
DOI PMID |
[58] |
D. Chen, X. Xiong, B. Zhao, M.A. Mahmoud, M.A. El-Sayed, M. Liu, Adv. Sci. 3 (2016) 1500433.
DOI URL |
[59] |
E. Flores, N. Vonrüti, P. Novák, U. Aschauer, E.J. Berg, Chem. Mater. 30 (2018) 4694-4703.
DOI URL |
[60] | C. Li, P. Tian, H.C. Pang, J. Ye, G.L. Ning, Chin. J. Inorg. Chem. 36 (2020) 1492-1498. |
[1] | Cecil Cherian Lukose, Guillaume Zoppi, Martin Birkett. Mn3Ag(1-x)Cu(x)N antiperovskite thin films with ultra-low temperature coefficient of resistance [J]. J. Mater. Sci. Technol., 2022, 99(0): 138-147. |
[2] | Gang Niu, Hatem S. Zurob, R.D.K. Misra, Huibin Wu, Yu Zou. Strength-ductility synergy in a 1.4 GPa austenitic steel with a heterogeneous lamellar microstructure [J]. J. Mater. Sci. Technol., 2022, 106(0): 133-138. |
[3] | Qingfang Huang, Qingzheng Jiang, Jifan Hu, Sajjad Ur Rehman, Gang Fu, Qichen Quan, Jixiang Huang, Deqin Xu, Dakun Chen, Zhenchen Zhong. Extraordinary simultaneous enhancement of the coercivity and remanence of dual alloy HRE‐free Nd‐Fe‐B sintered magnets by post‐sinter annealing [J]. J. Mater. Sci. Technol., 2022, 106(0): 236-242. |
[4] | Xiang Chen, Baoxuan Zhang, Qin Zou, Guangsheng Huang, Shuaishuai Liu, Junlei Zhang, Aitao Tang, Bin Jiang, Fusheng Pan. Design of pure aluminum laminates with heterostructures for extraordinary strength-ductility synergy [J]. J. Mater. Sci. Technol., 2022, 100(0): 193-205. |
[5] | Kai Huang, Yuyang Xu, Yanpeng Song, Ruyue Wang, Hehe Wei, Yuanzheng Long, Ming Lei, Haolin Tang, Jiangang Guo, Hui Wu. NiPS3 quantum sheets modified nitrogen-doped mesoporous carbon with boosted bifunctional oxygen electrocatalytic performance [J]. J. Mater. Sci. Technol., 2021, 65(0): 1-6. |
[6] | Q. Cheng, X.D. Xu, P. Xie, L.L. Han, J.Y. He, X.Q. Li, J. Zhang, Z.T. Li, Y.P. Li, B. Liu, T.G. Nieh, M.W. Chen, J.H. Chen. Unveiling anneal hardening in dilute Al-doped AlxCoCrFeMnNi (x = 0, 0.1) high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 91(0): 270-277. |
[7] | Tobias Mittnacht, P.G. Kubendran Amos, Daniel Schneider, Britta Nestler. Morphological stability of three-dimensional cementite rods in polycrystalline system: A phase-field analysis [J]. J. Mater. Sci. Technol., 2021, 77(0): 252-268. |
[8] | Guan-Qiang Wang, Ming-Song Chen, Hong-Bin Li, Y.C. Lin, Wei-Dong Zeng, Yan-Yong Ma. Methods and mechanisms for uniformly refining deformed mixed and coarse grains inside a solution-treated Ni-based superalloy by two-stage heat treatment [J]. J. Mater. Sci. Technol., 2021, 77(0): 47-57. |
[9] | D.P. Yang, P.J. Du, D. Wu, H.L. Yi. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process [J]. J. Mater. Sci. Technol., 2021, 75(0): 205-215. |
[10] | Yan Chong, Tilak Bhattacharjee, Yanzhong Tian, Akinobu Shibata, Nobuhiro Tsuji. Deformation mechanism of bimodal microstructure in Ti-6Al-4V alloy: The effects of intercritical annealing temperature and constituent hardness [J]. J. Mater. Sci. Technol., 2021, 71(0): 138-151. |
[11] | Le Thai Duy, Ji-Ye Baek, Ye-Ji Mun, Hyungtak Seo. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT [J]. J. Mater. Sci. Technol., 2021, 71(0): 186-194. |
[12] | H.T. Jeong, W.J. Kim. Microstructure tailoring of Al0.5CoCrFeMnNi to achieve high strength and high uniform strain using severe plastic deformation and an annealing treatment [J]. J. Mater. Sci. Technol., 2021, 71(0): 228-240. |
[13] | Baoxian Su, Liangshun Luo, Binbin Wang, Yanqing Su, Liang Wang, Robert O. Ritchie, Enyu Guo, Ting Li, Huimin Yang, Haiguang Huang, Jingjie Guo, Hengzhi Fu. Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy [J]. J. Mater. Sci. Technol., 2021, 62(0): 234-248. |
[14] | Majid Jafari, Chan-Woo Bang, Jong-Chan Han, Kyeong-Min Kim, Seon-Hyeong Na, Chan-Gyung Park, Byeong-Joo Lee. Evolution of microstructure and tensile properties of cold-drawn hyper-eutectoid steel wires during post-deformation annealing [J]. J. Mater. Sci. Technol., 2020, 41(0): 1-11. |
[15] | Yue Zhao, Kai Wang, Shuang Yuan, Yonghui Ma, Guojian Li, Qiang Wang. The accelerating nanoscale Kirkendall effect in Co films-native oxide Si (100) system induced by high magnetic fields [J]. J. Mater. Sci. Technol., 2020, 46(0): 127-135. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||